scholarly journals Sulfonated Magnetic Nanocomposite Based on Reactive PGMA-MAn Copolymer@Fe3O4 Nanoparticles: Effective Removal of Cu(II) Ions from Aqueous Solutions

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Reza Hasanzadeh ◽  
Peyman Najafi Moghadam ◽  
Naeimeh Bahri-Laleh ◽  
Ehsan Nazarzadeh Zare

Chelating magnetic nanocomposites have been considered as suitable materials for removal of heavy metal ions for water treatment. In this work poly(glycidyl methacrylate-maleic anhydride) copolymer (PGMA-MAn) is modified with 4-aminobenzenesulfonic acid (ABSAc) and subsequently the product reacted with modified Fe3O4 nanoparticles and 1,2-ethanedithiol (EDT) in the presence of ultrasonic irradiation for preparation of tridimensional chelating magnetic nanocomposite. Synthesized magnetic nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX), elemental mapping analysis (EMA), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA). The adsorption behavior of Cu(II) ions was investigated by synthesized nanocomposite in various parameters such as pH, contact time, metal ion concentration, and adsorbent dosage. The equilibrium distribution coefficient (kd) was determined and the findings prove that the kd value is approximately high in the case of all selected metal ions. The synthesized nanocomposite exhibited good tendency for removing Cu(II) ions from aqueous solutions even at an acidic pH.

2015 ◽  
Vol 6 (2) ◽  
pp. 310-324 ◽  
Author(s):  
Selvaraj Dinesh Kirupha ◽  
Selvaraj Kalaivani ◽  
Thangaraj Vidhyadevi ◽  
Periyaraman Premkumar ◽  
Palanithamy Baskaralingam ◽  
...  

A novel poly [2,5-(1,3,4-thiadiazole)-benzalimine] abbreviated as TDPI adsorbent was synthesized using simple polycondensation technique. The synthetic route involves the preparation of 2,5-diamino-1,3,4-thiadiazole from 2,5-dithiourea and subsequent condensation with terephthalaldehyde. The resin was chemically characterized using Fourier transform infrared (FT-IR), 1H-NMR, and 13C-NMR spectroscopic analysis. Surface morphology and thermal stability were analyzed using scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The effect of the pH value of solution, contact time, adsorbent dose, and initial metal ion concentration were investigated by batch equilibrium adsorption experiments. Kinetic studies show that the adsorption of metal ions onto the resin proceeds according to the pseudo-second-order model and the equilibrium data were best interpreted by the Redlich–Peterson isotherm. The experimental values of the adsorption capacities of Pb2+, Cu2+, Ni2+, and Cd2+ on to TDPI could reach up to 437.2, 491.6, 493.7, and 481.9 mg.g−1 respectively. The exothermic nature of the process, the affinity of the adsorbent towards the metal ions and the feasibility of the process are explained in the thermodynamic parameters. The resin stability and re-usability studies suggest that the resin is chemically stable (0.3 N HCl and H2SO4) and could be regenerated without any serious decline in performance.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2020 ◽  
Vol 38 (7A) ◽  
pp. 1047-1061
Author(s):  
Shurooq T. Remedhan

In the present study commercial zinc oxide (ZnO) nanoparticles in the size of 30 nm were utilized as an adsorbent for the removal of Ni (II) ion from synthetic waste aqueous solution. Adsorption capacity of ZnO for removing Ni (II) ions from aqueous solutions was measured at different pH, adsorbent dose, contact time, temperature and metal ion concentration. Moreover,  adsorption isotherms, kinetics and thermodynamics were studied to understand  the  nature  and  mechanism  of  adsorption. ZnO nanoparticles were characterized by X-Ray diffract analysis(XRD),Fourier Transform Infrared Spectroscopy(FT-IR), scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy(EDS) and Brunauer-Emmett-Teller (BET). The maximum amount of Ni (II) removal were found to be (98.71%) from its aqueous solutions by ZnO nanoparticles which was achieved at the evaluated optimum conditions. The experimental kinetic data were examined using the pseudo-second-order rate model with a high regression coefficient. The adsorption isotherm was well described to the equilibrium data by Langmuir isotherm model (R2=0.990). In addition, the calculated thermodynamic parameters, the standard Gibbs free energy ΔGo, the change in standard enthalpy ∆Ho and the standard entropy change ∆So showed that the adsorption of Ni (II) onto ZnO nanoparticles was feasible, endothermic and spontaneous respectively. The experimental results suggest that ZnO nanoparticles can be used as a potential adsorbent for the efficient removal of heavy metals from aqueous solutions than any other adsorbent because an economical and low- consumption energy due to its ambient operation conditions.


2014 ◽  
Vol 16 (4) ◽  
pp. 6-13 ◽  
Author(s):  
Garima Mahajan ◽  
Dhiraj Sud

Abstract Utilization of agricultural waste material with approach to enhance the heavy metal remediation properties by carbonizing the biomass at nano size particles has been explored in present investigation from aqueous solutions. In this study the lignocellulosic, nitrogenous agricultural waste biomass Delbergia sissoo pods (DSP) has been tried for sequestering of Cd (II), Pb (II) and Ni (II) metal ions from aqueous solutions. Batch experiments were performed for removal of targeted metal ions keeping in consideration the preliminary affecting parameters such as effect of adsorption dose, pH, initial metal ion concentration, stirring speed and contact time. The sorption studies were analyzed by using, Freundlic isotherm and Langmuir isotherm models. The kinetics of the process was evaluated by pseudo pseudo-first order and pseudo second order kinetic models. Studies reveal that the equilibrium was achieved with in 30 min of the contact time at optimized parameters. Analytical studies of biosorbent were done by means of FT-IR, SEM and XRD. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


2012 ◽  
Vol 441 (3) ◽  
pp. 1017-1035 ◽  
Author(s):  
Katarzyna Banaszak ◽  
Vlad Martin-Diaconescu ◽  
Matteo Bellucci ◽  
Barbara Zambelli ◽  
Wojciech Rypniewski ◽  
...  

The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni2+ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni2+ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni2+- and Zn2+-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni2+) and 2.52 Å (Zn2+) resolution, show the conserved proximal and solvent-exposed His102 residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His152. The analysis of X-ray absorption spectral data obtained using solutions of Ni2+- and Zn2+-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.


1981 ◽  
Vol 59 (12) ◽  
pp. 1734-1744 ◽  
Author(s):  
Thomas M. Fyles ◽  
Virginia A. Malik-Diemer ◽  
Dennis M. Whitfield

An artificial membrane system based on a series of macrocyclic polyether carriers (crown ethers) is described. Under the influence of a proton gradient the carriers move alkali metal ions from basic to acidic solution through a chloroform membrane phase. Transport occurs against the concentration gradient of the transported ion as a result of a coupled counterflow of protons. Different transport behaviors are observed depending upon the metal ion concentration. At high metal ion concentration the amount transported is a linear function of time; at lower metal ion concentration the amount transported is a complex function of time which may be described as the result of a pair of consecutive first order processes. Effects of metal ion, carrier, and proton concentration on transport rate are considered. The rate increases with increasing metal ion or carrier concentration but is essentially independent of the pH of either aqueous phase. Increased lipophilicity of the carrier also results in a rate increase. Carriers derived from 18-crown-6 transport potassium selectively and all ions more rapidly than 15-crown-5 derivatives which are, however, selective for sodium. The overall efficiency of the system is discussed in terms of competing "leak" reactions, either of cations from the basic phase or of anions from the acidic phase.


Sign in / Sign up

Export Citation Format

Share Document