scholarly journals Numerical Study of Pollutant Emissions in a Jet Stirred Reactor under Elevated Pressure Lean Premixed Conditions

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Karim Mazaheri ◽  
Alireza Shakeri

Numerical study of pollutant emissions (NO and CO) in a Jet Stirred Reactor (JSR) combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP) conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC) method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS) equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM), and for turbulence chemistry interactions, finite rate-Eddy dissipation model are employed. Effects of pressure (3, 6.5 bars) and inlet temperature (408–573 K) over a range of residence time (1.49–3.97 ms) are numerically examined. A good agreement between the numerical and experimental distribution of NO and CO was found. The effect of decreasing the operating pressure on NO generation is much more than the effect of increase in the inlet temperature.

Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Ground based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


Author(s):  
D. Bertini ◽  
L. Mazzei ◽  
A. Andreini ◽  
B. Facchini

Abstract The importance of the combustion chamber has been underestimated for years by aeroengine manufacturers that focused their research efforts mainly on other components, such as compressor and turbine, to improve the engine performance. Nevertheless, stricter requirements on pollutant emissions have contributed to increase the interest on combustor development and, nowadays, new design concepts are widely investigated. To meet the goals of ACARE FlightPath 2050 and future ICAO-CAEP standards one of the most promising results is provided by the Lean Burn technology. As this combustion mode is based on a lean Primary Zone, the air devoted to liner cooling is restricted and advanced cooling systems must be exploited to obtain higher overall effectiveness. The pushing trends of Turbine Inlet Temperature and Overall Pressure Ratio in modern aeroengine are not supported enough by the development of materials, thus making the research branch of liner cooling increasingly relevant. In this context, Computational Fluid Dynamics is able to predict the flow field and the complex interactions between the involved phenomena, supporting the design of modern Lean Burn combustors in all stages of the process. RANS approaches provide a solution of the problem with low computational cost, but can lack in accuracy when the flow unsteadiness dominates the fluid dynamics and the strong interactions, as in aeroengine combustors. Even if steady simulations can be easily employed in the preliminary design, their inaccuracy can be detrimental for an optimized combustor design and Scale-Resolving methods should be preferred, at least, in the final stages. Unfortunately, having to deal with a multiphysics problem as Conjugate Heat Transfer (CHT) in presence of radiation, these simulations can become computationally expensive and some numerical treatments are required to handle the wide range of time and space scales in an unsteady framework. In the present work the metal temperature distribution is investigated from a numerical perspective on a full annular aeronautical lean burn combustor operated at real conditions. For this purpose, the U-THERM3D multiphysics tool was developed in ANSYS Fluent and applied on the test case. The results are compared against RANS and experimental data to assess the tool capability to handle the CHT problem in the context of scale-resolving simulations.


Author(s):  
Xiaotong Mi ◽  
Chi Zhang ◽  
Bo Wang ◽  
Yuzhen Lin

The centrally staged layout is preferred in the advanced aero-engine combustor to achieve low pollutant emissions as well as stable operation in lean premixed prevaporized combustion. However, because the high-speed main stage airflow prevents the pilot fuel droplets arriving at igniter tip and has a strong convection effect on the initial flame kernel, the application of centrally staged combustor is restricted by its poor ignition and lean blow-out performance. In the centrally staged combustor, the main stage and pilot stage have strong coupled influences on the flow field and fuel distribution. The aim of this paper is to research the impact of the main stage air split on the ignition performance for the baseline case and the comparison case of the main swirler in the TeLESS-II combustor. The main stage air flow rate of the comparison case is about 8 percent less than that of the baseline case. The results of the ignition test at room inlet temperature and pressure indicate that the ignition performance of the comparison case is significantly better than that of the baseline case. The results of the lean blow-out tests show that the main stage air splits do not make the lean blow-out performance worse. To achieve a better understanding of the test results, PLIF technology and CFD analysis were used to measure the fuel distribution and non-reacting flow field. The PLIF and CFD results demonstrate that the most of the fuel spray disperse outward into the main stage cold airflow in the baseline case so that the pilot flame is hard to be established, which leads to poor ignition performance. On the other hand, in the comparison case, the most of the fuel is confined in the recirculation region, which gives a better ignition performance. Compared with the baseline case, the main stage airflow velocity decays faster in the comparison case. It changes the direction of the instantaneous velocity in the spark vicinity, which makes it more likely for the ignition kernel to be captured by the recirculation stream in the comparison case. Therefore, the different fuel distribution and flow field characteristics cause the ignition performance improvement in the comparison case. The improvement is due to the different main stage air flow rates, which is the consequence of the main stage air split.


Author(s):  
Michael Russ ◽  
Axel Meyer ◽  
Horst Bu¨chner

One of the main objectives of combustion research in field of gas turbine application during the last decades was and still is the reduction of pollutant emissions. The most promising technology to reduce these pollutants turned out to be Lean Premixed (LP) and Lean Premixed Pre-Vaporized (LPP) combustion. However, serious problems concerning combustion-driven instabilities occurred with the implementation of the LP/LPP-concept. Today, prediction and systematic suppression of self-sustained combustion instabilities is an issue still unsolved, due to incomplete understanding of the physical feedback mechanism and the lack of models for dynamic flame response, i.e. frequency dependent characteristics of LP/LPP swirl flames. In that context, the purpose of the current paper is the establishment of a physical model to describe frequency dependent flame dynamics concerning burning velocity of steady-state premixed flames. Derived from that basic understanding, scaling laws for the prediction of unstable operation conditions will be established in dependence on main operation parameters such as thermal load, mixture temperature, air equivalence ratio and especially of fuel and operating pressure. Therefore, a new swirl-burner has been designed, offering the feasibility to choose the type of fuel, to adjust the swirl number for main and pilot burner and the burner exit geometry steplessly and to vary preheating temperatures, air equivalence ratios and thermal loads in a range of industrial relevance for gas turbine applications. To establish a periodical modulation of the mixture mass flow of the main L(P)P flame at the burner outlet sinusoidally in-time with well-defined frequencies and amplitudes, a pulsating unit was used. Using a mixing/ pre-vaporizing unit to create a time-independent and spatial homogeneous mixture of natural gas/ kerosene vapor and combustion air at the burner outlet, flame transfer functions of LP- and LPP swirl flames depending on main operating parameters were determined. The discussed results then lead to stability map for a given combustion system depending on the main operation parameters based on the knowledge of only one fully-described parameter combination leading to an instable condition. Based on this scaling procedure and confirmed by further experimental work the prediction of stability limits depending especially on the type of fuel, the swirl number and the operating pressure will be possible.


Author(s):  
Teodora Rutar ◽  
David C. Horning ◽  
John C. Y. Lee ◽  
Philip C. Malte

The effect of the residence time variation on NOx formation in high-intensity, lean-premixed (LP) methane combustion is explored through experiments conducted in a high-pressure jet-stirred reactor (HP-JSR) operated at 6.5 atm pressure. The residence time is varied between 0.5 ms and 4 ms, holding the measured reactor recirculation zone temperature constant at 1803 K. Air preheat is not used. The results indicate a minimum NOx level of 3.5 ppmvd (15% O2) for reactor mean residence times between 2 and 2.5 ms. As the residence time is reduced from 2.0 ms to 0.5 ms, the NOx increases, consistent with a spreading of super-equilibrium concentrations of free-radicals throughout the reactor. For the shortest residence times examined, PSR modeling agrees with the NOx measurements. At long residence times, (i.e., above 2.5 ms), the measured CO behavior indicates the super-equilibrium free radicals, and thus the rapid NOx production, are confined mainly to the jet zone of the reactor. For the long residence time range, the measured NOx increases with increasing residence time, and is significantly less than the PSR predictions. A simple two-zone model of the HP-JSR is used to interpret and evaluate the NOx formation. Experiments exploring the effect of inlet temperature on NOx are conducted in an atmospheric pressure, methane-fired, jet-stirred reactor (A-JSR). The reactor temperature is held constant at 1788 K, and the inlet mixture temperature is varied between the no-preheat case and 623 K. These experiments show that increasing the inlet air temperature over the full range tested decreases the NOx by about 30%. Several explanations are offered for the behavior. For both reactors, i.e., the HP-JSR and A-JSR, single inlet jet nozzles are used. The results lead to a practical conclusion that very low NOx levels can be achieved for combustion in strongly back-mixed reaction cavities adjusted to optimal residence time and inlet temperature.


2011 ◽  
Vol 19 (04) ◽  
pp. 311-319 ◽  
Author(s):  
HYUN JIN KIM ◽  
WOO YOUNG KIM ◽  
JONG MIN AHN ◽  
SUNG OUG CHO

In order to recover friction loss in the expansion process and increase refrigeration effect in a CO2 heat pump cycle, a rotary vane expander has been designed. Numerical simulation has been carried out to estimate the performance of designed expander, and it has been found that vane jumping or vane recession from the cylinder wall occurs in a certain range of the crank angle. To improve the vane motion, a way of pressurizing the vane back chamber has been employed, and elimination of the vane jumping phenomenon has been confirmed by the numerical simulation. With the operating pressure conditions of 9 MPa/4.5 MPa and inlet temperature of 35°C, the expander efficiency has been calculated to be 42.72%, and improvement of COP of a CO2 heat pump cycle with this expander has been estimated to be about 12.82%.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vince McDonell

Ground-based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work, tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650 K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Bernhard Stiehl ◽  
Michelle Otero ◽  
Tommy Genova ◽  
Scott Martin ◽  
Kareem Ahmed

Abstract This paper investigates the pressure dependency of a lean premixed jet injected into a lean vitiated crossflow with an experimentally verified detailed chemistry computational fluid dynamics (CFD) model and 53 species considered. Experimental data were taken in an axially staged combustor with an optically accessible test section, allowing the use of particle image velocimetry (PIV) and CH* chemiluminescence techniques as well as point measurement of species concentration, temperature, and pressure. The experimental data cases at one, three, and five atmospheres were selected to describe the flame stabilization dependency on pressure and gain the required knowledge for an extrapolation to engine condition. Simulated exit nitrogen oxide levels were validated with experimental emission data, and a global emission trend for the NO reduction at elevated pressure and constant turbine inlet temperature level was defined. The nitrogen oxide benefit at elevated operating pressure was justified with the significantly smaller flame surface area: the analysis of the simulated spanwise and top-view profiles showed a relatively short receded core flame with nitrogen oxide production in the center at high pressure relative to a longer and larger shear layer flame at atmospheric condition that produced NO toward the inner and outer side of the flame. Decomposition of the Damköhler number revealed the strong influence of the reaction timescales with higher reaction rates at elevated pressure, along with a moderate influence of the turbulent timescales, showing higher turbulence intensity in the lee-side recirculation zone at lower pressure.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


1994 ◽  
Author(s):  
Joseph Zelina ◽  
Richard Striebich ◽  
Dilip Ballal

Sign in / Sign up

Export Citation Format

Share Document