scholarly journals Urea Formaldehyde Composites Reinforced with Sago Fibres Analysis by FTIR, TGA, and DSC

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

Agricultural material or biomaterial plays an important role in the field of fibre-reinforced polymeric materials with their new range of applications and achieves the ecological objective. Composition and structure of the nature fibre and matrix must be taken into consideration for the end use. In this project, Sago fibre particleboard bonds with Urea Formaldehyde to form composite. Fourier Transform Infrared (FTIR) spectra are used to characterize the Sago/Urea Formaldehyde composite in terms of their functional group and bonding. Sago/UF composite with smaller particle and higher loading of fibre with 15 wt% of UF matrix has the higher curing properties. The composite will have a denser structure by adopting bigger particle and higher loading of UF matrix. The Sago/UF composite only endures a single stage of decomposition. Thermal stability results indicate that particle size, particle/matrix interface adhesion, and particle loading have great influence on the thermal properties of the composites.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2860
Author(s):  
Eglė Kumpikaitė ◽  
Sandra Varnaitė-Žuravliova ◽  
Indrė Tautkutė-Stankuvienė ◽  
Ginta Laureckienė

The behaviour of textile products made from different fibres during finishing has been investigated by many scientists, but these investigations have usually been performed with cotton or synthetic yarns and fabrics. However, the properties of raw materials such as linen and hemp (other cellulose fibres) and linen/silk (cellulose/protein fibres) have rarely been investigated. The aim of the study was to investigate and compare the mechanical (breaking force and elongation at break) and end-use (colour fastness to artificial light, area density, and abrasion resistance) properties of cellulose and cellulose/protein woven fabrics. For all fabrics, ΔE was smaller than three, which is generally imperceptible to the human eye. Flax demonstrated the best dyeability, and hemp demonstrated the poorest dyeability, comparing all the tested fabrics. The colour properties of fabrics were greatly influenced by the washing procedure, and even different fabric components of different weaves lost their colours in different ways. Flax fibres were more crystalline than hemp, and those fibres were more amorphous, which decreased the crystallinity index of flax in flax/silk blended fabric. Unwashed flax fabric was more resistant to artificial light than flax/silk or hemp fabrics. Finishing had a great influence on the abrasion resistance of fabrics. The yarn fibre composition and the finishing process for fabrics both influenced the mechanical (breaking force and elongation at break) and end-use (area density and abrasion resistance) properties of grey and finished fabrics woven from yarns made of different fibres.


2021 ◽  
Author(s):  
Jiawei Li ◽  
Miao Chen ◽  
Ze Zhang ◽  
Cai-Yuan Pan ◽  
Wen-Jian Zhang ◽  
...  

The composition and structure of polymers have great influence on their performances. Copolymerization of different monomers is a straightforward method for the fabrication of polymers with different compositions. Generally, such...


2016 ◽  
Vol 833 ◽  
pp. 3-10
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

Every year, the sago processing industry in Sarawak-Mukah had generated huge amount of sago waste after the milling process and scientists have employ the waste into composite material. The fabrication and testing method are based on the Japanese A5908 Industrial Standard. Single-layer particleboards with targeted density of 600kg/m3 were produced from different sizes of sago particles. The mechanical properties of sago waste were investigated to study the feasibility of using this sample as a raw material in particleboard manufacturing. The results of the test demonstrate that samples with different sizes of particles have great influence on the mechanical properties such as Young’s Modulus, Tensile Strength and Impact Strength. The findings show that the performance of the board is affected by the different sizes of sago particles used in the experiment and had proved that sago plants can be used as an alternative raw material in the particleboard manufacturing industry.


2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

We live in a world where wood products are hard to ignore. The sheer flexibility in the number of applications where the wood is used means that it is one of the most sought resources in the world. The wood products industry faces challenges in promoting sustainable management of forest resources. Composite materials have advantage of having an optimized performance, minimized weight and volume, cost effectiveness, chemical resistance and resistance to biodegradation. The research in this paper is focused on sago particles with adhesive of low emission urea formaldehyde (UF) resin 51.6% solid content. The fabrication and testing method are based on JIS A 5908 standard. A single-layer particleboard by using the sago particles has been established at targeted density level 600kg/m3. Particles with weight fractions of 90%, 85%, 80%, 75% and 70% were used in the fabrication of sago composite boards. The results of the test demonstrated that the samples with different weight fraction and size have great influence on the mechanical properties like: MOR, screw test and internal bonding. The findings had demonstrated that the level of weight fraction and size had affects the performance of a board. At the next stage of the research the comparison between sago and wood particleboard will be carried out to identify the feasibility of these materials in the industrial application.


1994 ◽  
Vol 40 (9) ◽  
pp. 1845-1849 ◽  
Author(s):  
P Singh ◽  
F Moll ◽  
S H Lin ◽  
C Ferzli ◽  
K S Yu ◽  
...  

Abstract Starburst dendrimers are novel, water-soluble polymeric materials, with a well-defined composition and structure. In our application, we used dendrimers composed of poly(amidoamine) groups to which we coupled several specific antibodies, to investigate potential formats based on radial partition immunoassay. The coupled antibodies have retained their stability and immunological binding after coupling, both in solution and when immobilized onto a solid support. On the basis of our feasibility studies with model systems, we conclude that immunoassays can be developed with performance equivalent to or better than that in many established systems. By application of a mixture of the dendrimer-coupled antibody and the analyte of interest to the solid phase, we have investigated the performance characteristics of solution-phase immunoassays. Our experiments demonstrate enhanced sensitivity for creatine kinase MB isoenzyme (CKMB), thyrotropin, and myoglobin assays and reduced instrumental analysis time for the CKMB assay.


2009 ◽  
Vol 113 (3) ◽  
pp. 1501-1506 ◽  
Author(s):  
Rongguo Wang ◽  
Haiyan Li ◽  
Honglin Hu ◽  
Xiaodong He ◽  
Wenbo Liu

Author(s):  
Przemysław Pączkowski ◽  
Barbara Gawdzik

<p>The polymer containing desired functional group can be obtained by a direct-polymerization or post-polymerization modification. These functionalization methods offer different way of insertion of functionality into the polymeric materials. In the literature, scientist can meet with the descriptions of many techniques of functionalization process. This review article focuses on the pathway for post-polymerization modification of polymeric materials bearing pendant epoxide groups.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Chen Chiang Tay ◽  
Sinin Hamdan ◽  
Mohd Shahril B. Osman

The sago processing industry in Mukah, Sarawak, had generated huge amount of sago waste after the milling process and scientists have employed the waste into composite material. In this work, sago residues were mixed with the Phenol Formaldehyde (PF) and Urea Formaldehyde (UF) for particleboard fabrication. The fabrication and testing methods are based on JIS A 5908 Standard. A single layer particleboard using sago particles was fabricated at targeted density of 600 kg/m3. Particles with weight fractions of 90%, 85%, and 80% with two different matrices were used in the fabrication. The results demonstrated that the samples with different weight fraction and matrix have great influence on the mechanical properties such as MOR, MOE, Young’s Modulus, tensile strength, impact strength, screw test, and internal bonding. The sago UF/PF particleboard only displays single stage decomposition. All the panels underwent physical tests which are water absorption and thickness swelling. The combination of sago particles with UF/PF can be utilized for general indoor application purposes such as furniture manufacturing. Sago particleboard made by UF/PF provided the advantages like optimized performance, minimized weight and volume, cost effectiveness, chemical resistance, and resistance to biodegradation.


2010 ◽  
Vol 26-28 ◽  
pp. 1056-1060
Author(s):  
Li Bin Zhu ◽  
Bo Han ◽  
Ji You Gu ◽  
Yan Hua Zhang ◽  
Hai Yan Tan ◽  
...  

The purpose of the study was to manufacture water-resistance plywood with using UF resin modified by emulsifiable polyisocyanate. The emulsifiable polyisocyanate which contains plenty of hydrophilic segments and teminal isocyanate groups were synthesized by reaction between various kinds of polyether polyols and polymeric methane dipthenyl diisocyanate (pMDI). A type of composite adhesive was obtained from the mixture of emulsifiable polyisocyanate and urea formaldehyde resin. The process parameters, such as the molar ratio of –NCO and –OH, mass fraction of emulsifiable polyisocyanate in UF resin and accessory ingredient have a great influence on the composite adhesive. X-ray photoelectron spectroscopy (XPS) had been used to analyze the chemical structure of bonding interface. The results showed that the composite adhesive consisting of UF resin and emulsifiable polyisocyanate content of 7.5% and kaolin content of 1.5% was used in plywood with high physical and mechanical properties, water resistance and low formaldehyde emission.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1013
Author(s):  
Xiaoxing Yan ◽  
Wenting Zhao ◽  
Lin Wang ◽  
Xingyu Qian

The effects of the core-shell ratio and concentration of urea formaldehyde (UF) resin-coated waterborne acrylic resin microcapsules on the optical properties, mechanical properties and liquid resistance of waterborne topcoat coatings on the surface of Tilia europaea were investigated. With the increase of microcapsule concentration, the color difference and hardness of the paint film gradually increased, the gloss and adhesion of the paint film gradually decreased, and the impact resistance and elongation at break of the paint film increased first and then decreased. With the increase of the core-shell ratio, the hardness and impact resistance of the paint film increased first and then decreased, and the adhesion of the paint film decreased gradually. Red ink had a great influence on the liquid resistance of paint film. When the core-shell ratio of UF-coated waterborne acrylic resin microcapsule was 0.58:1 and the microcapsule concentration was 10.0%, the comprehensive performance of paint film on Tilia europaea was better. The prepared self-healing microcapsules applied to the waterborne coatings committed to prolonging the service life of the paint film.


Sign in / Sign up

Export Citation Format

Share Document