scholarly journals Review on Research about Traditional Chinese Medicine in Cancer Stem Cell

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yaohan Wang ◽  
Li Feng ◽  
Bingkui Piao ◽  
Peitong Zhang

Cancer stem cells (CSCs) are small subpopulations of neoplastic cells within a tumor, which have self-renewal and differentiation abilities and could generate new tumors with few cells. Researches have showed that CSCs are considered the most likely reason for cancer recurrence and metastasis. Accumulating evidences have showed that traditional Chinese medicine (TCM) has significant effect on CSCs. It could inhibit the proliferation, self-renew, and multidifferentiation of CSCs. We aimed to summarize the theories of CSCs in TCM, the inhibitory effect, and the pathway on CSCs of TCM. This review will provide potential new strategies and alternative perspectives for CSCs treatments and basic research into complementary and alternative medicine.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shijie Ding ◽  
Chunbao Li ◽  
Ninghui Cheng ◽  
Xiaojiang Cui ◽  
Xinglian Xu ◽  
...  

Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.


2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


Author(s):  
Nese Unver

: Cancer stem cells represent a rare subpopulation of cancer cells carrying self-renewal and differentiation features in the multi-step tumorigenesis, tumor recurrence and metastasis. Pro-inflammatory stress is highly associated with cancer stemness via induction of cytokines, tumor-promoting immune cells and cancer stemness-related signaling pathways. This review summarizes the major pro-inflammatory factors affecting cancer stem cell characteristics and the critical immunotherapeutic strategies to eliminate cancer stem cells.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Margaret L. Dahn ◽  
Paola Marcato

Cancer stem cells (CSCs) are functionally defined in our laboratories by their impressive tumor-generating and self-renewal capacity; clinically, CSCs are of interest because of their enhanced capacity to evade conventional therapies [...]


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13543-e13543
Author(s):  
Monal Mehta ◽  
Atif J. Khan ◽  
Hatem E. Sabaawy ◽  
Bruce George Haffty

e13543 Background: Glioblastoma (GBM) is the most frequent and deadly brain cancer. Despite tolerance doses of radiation, control of tumor growth within the brain remains a formidable failure. Since the identification of brain cancer stem cells (BCSCs), efforts are underway to target the pathways regulating these cells. The role of Bmi-1 (B-cell specific MMLV insertion site-1), a polycomb member of chromatin-remodeling complex, in BCSCs self-renewal was elucidated. Here we utilize shRNA targeting or pharmacological inhibition of Bmi-1 in GBM cell lines and primary cells as a radiosensitizer to examine the effects of combination therapy on cell death and BCSCs differentiation. Methods: Cells were pre-treated with a Bmi-1 inhibitor before being irradiated. Serial neurosphere assay, a measure of self-renewal potential, was employed to study the effects of radiation, Bmi-1 inhibition, or the combination on BCSCs. The efficacy of this combination on cell death was assessed with MTT and clonogenic assays. Next, the abilities of the inhibitor and radiation to induce differentiation in GBM cell lines and primary cells were quantified. Further, by utilizing a novel zebrafish orthotropic xenograft model, small molecules targeting Bmi-1 and other BCSC pathways can be identified, and used to predict response to combination therapies. Results: Targeting of Bmi-1 in combination with radiation, specifically as a radiosensitizer, induced significant cell death in GBM cells, and was five-fold more effective than radiation only. Importantly, the neurosphere forming ability of BCSCs was severely compromised when the cells were treated with the combination, indicating a potent effect on the stem cell constituency. These effects may be due to loss of BCSC self-renewal potential, increased differentiation, and/or apoptosis as cells treated with the combination exhibited decreased expression of neural stem cell markers and abnormal phenotypes compared to single treatment. Conclusions: Targeting of Bmi-1 may eliminate the subpopulation of radioresistant BCSCs. Bmi-1 inhibition when combined with radiotherapy might provide an effective therapy for GBM patients specifically through its effect on BCSCs by affecting their survival, proliferation, and stem cell features.


2021 ◽  
Vol 11 ◽  
Author(s):  
Thahomina Khan ◽  
Horacio Cabral

Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.


2021 ◽  
Author(s):  
Hui-Juan Lu ◽  
Juan Li ◽  
Guodong Yang ◽  
Cun-Jian Yi ◽  
Daping Zhang ◽  
...  

Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, miRNA sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNAs-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi23-vi24
Author(s):  
Kelly Mitchell ◽  
Joseph Alvarado ◽  
Christopher Goins ◽  
Steven Martinez ◽  
Jonathan Macdonald ◽  
...  

Abstract Glioblastoma (GBM) progression and resistance to conventional therapies is driven in part by cells within the tumor with stem cell properties including quiescence, self-renewal and drug efflux potential. It is thought that eliminating these cancer stem cells (CSCs) is a key component to successful clinical management of GBM. However, currently, few known molecular mechanisms driving CSCs can be exploited for therapeutic development. Core transcription factors such as SOX2, OLIG2, OCT4 and NANOG maintain the CSC state in GBM. Our laboratory recently uncovered a self-renewal signaling axis involving RBBP5 that is necessary and sufficient for CSC maintenance through driving expression of these core stem cell maintenance transcription factors. RBBP5 is a component of the WRAD complex, which promotes Lys4 methylation of histone H3 to positively regulate transcription. We hypothesized that targeting RBBP5 could be a means to disrupt epigenetic programs that maintain CSCs in stemness transcriptional states. We found that genetic and pharmacologic inhibition of the WRAD complex reduced CSC growth, self-renewal and tumor initiation potential. WRAD inhibitors partially dissembled the WRAD complex and reduced H3K4 trimethylation both globally and at the promoters of key stem cell maintenance transcription factors. Using a CSC reporter system, we demonstrated that WRAD complex inhibition decreased growth of SOX2/OCT4 expressing CSCs in a concentration-dependent manner as quantified by live imaging. Overall, our studies assess the function of the WRAD complex and the effect of WRAD complex inhibitors in preclinical models and specifically on the stem cell state for the first time in GBM. Studying the functions of the WRAD complex in CSCs may improve understanding of GBM pathogenesis and elucidate how CSCs survive despite aggressive chemotherapy and radiation. Our ongoing studies aim to develop brain penetrant inhibitors targeting the WRAD complex as an anti-CSC strategy that could potentially synergize with standard of care treatments.


2020 ◽  
Author(s):  
Carmen Gil-Gas ◽  
Marta Sánchez-Díez ◽  
Paloma Honrubia-Gómez ◽  
Jose Luis Sánchez-Sánchez ◽  
Carmen Belen Alvarez-Simón ◽  
...  

Abstract Background: Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies has increased the probability of remission, relapse rates still remain high. Numerous studies have indicated the connection between cancer initiating cells and slow cellular cycle cells, identified by their capacity to retain long labelling (LT+). Methods: We have designed a transgenic protein consisting in the C-terminal part of this protein, which acts by blocking endogenous PEDF in culture cell assays. Present work is based in doses-response in vitro assays as well as flow cytometry analysis of surface markers and cell cycle kinetic study of the tumour initiating cells.Results: In this study we show that this type of cells is present not only in cancer cell lines but also in cancer cells from patients with metastatic and advanced stage tumours. We also present new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, expression of markers, and carcinogenicity of cancer stem cells. This protein has been involved in self-renewal in adult stem cells and has been described as anti-tumoral because of its anti-angiogenic effect. However, we show that PEDF enhances resistance in breast cancer patient cells in vitro culture by favoring a slow cellular cycle population (LT+). The PEDF signalling pathway could be a useful tool for controlling cancer stem cells self-renewal, and therefore control patient relapse. Conclusions: We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against Docetaxel treatment in cancer patient cells in vitro culture. We have also demonstrated that this PEDF modified protein produces a significant decrease in cancer stem cell markers. All these properties make this protein a potential application in clinical cancer therapies via co-administration with chemotherapy for relapse cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document