scholarly journals Effects of Wannachawee Recipe with Antipsoriatic Activity on Suppressing Inflammatory Cytokine Production in HaCaT Human Keratinocytes

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mingkwan Na Takuathung ◽  
Ariyaphong Wongnoppavich ◽  
Pornsiri Pitchakarn ◽  
Ampai Panthong ◽  
Parirat Khonsung ◽  
...  

Psoriasis is a chronic inflammatory and immune-mediated skin disease. The pathogenesis involves T cells activation via the IL-23/Th17 axis. Conventional treatments of psoriasis have adverse events influencing patients’ adherence. Wannachawee Recipe (WCR) has been effectively used as Thai folk remedy for psoriasis patients; however, preclinical evidence defining how WCR works is still lacking. This study defined mechanisms for its antiproliferation and anti-inflammatory effects in HaCaT cells. The cytotoxicity and antiproliferation results from SRB and CCK-8 assays showed that WCR inhibited the growth and viability of HaCaT cells in a concentration-dependent manner. The distribution of cell cycle phases determined by flow cytometry showed that WCR did not interrupt cell cycle progression. Interestingly, RT-qPCR revealed that WCR significantly decreased the mRNA expression of IL-1β, IL-6, IL-8, IL-17A, IL-22, IL-23, and TNF-α but induced IL-10 expression in TNF-α- and IFN-γ-induced HaCaT cells. At the protein level determined by ELISA, WCR significantly reduced the secretion of IL-17A, IL-22, and IL-23. The WCR at low concentrations was proved to possess anti-inflammatory effect without cytotoxicity and it did not interfere with cell cycle of keratinocytes. This is the first study to provide convincing evidence that WCR is a potential candidate for development of effective psoriasis therapies.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mengjiao Chen ◽  
Peijun Ding ◽  
Lili Yang ◽  
Xufeng He ◽  
Chunjie Gao ◽  
...  

To evaluate the anti-inflammatory activities of QRQS against AD and the inhibitory molecular mechanisms of IL-33/ST2 signal transduction, BALB/c mice were divided into six groups (normal control, OVA control, low-dose of QRQS, middle-dose of QRQS, high-dose of QRQS, and cetirizine) and epicutaneously exposed to ovalbumin or PBS for 3 weeks and treated with QRQS for 2 weeks. Skin biopsies and blood samples were obtained for histological study, antibody analysis, and RNA isolation. HaCaT cells, stimulated by TNF-α and IFN-γ, were treated with QRQS to evaluate mRNA and protein expression by RT-PCR and ELISA. QRQS decreased both epidermal and dermal thickness, alleviated dermatitis, and reduced IL-33 and ST2 positive cell numbers. The concentration of specific IgE, IgG, IgG1, and IgG2a antibodies in serum and the expression of IL-33, ST2, IL-1RAcP, IL-4, and IL-13 mRNA in the skin were suppressed. No significant difference exists in TNF-α or IFN-γ. QRQS decreased IL-33 mRNA and protein secretion in HaCaT cells exposed to TNF-α and IFN-γ in a time- and concentration-dependent manner. QRQS regulates related molecule expression of ovalbumin-induced dermatitis involved in the IL-33/ST2 signaling axis in the treatment of acute AD.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 427 ◽  
Author(s):  
Lei Wang ◽  
Jae-Young Oh ◽  
Young-Sang Kim ◽  
Hyo-Geun Lee ◽  
Jung-Suck Lee ◽  
...  

Previous studies suggested that fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, possesses strong antioxidant activity. To explore the cosmeceutical potential of fucoidan, its anti-photoaging and anti-melanogenesis effects were evaluated in the present study. The anti-photoaging effect was investigated in ultraviolet (UV) B-irradiated human keratinocytes (HaCaT cells), where fucoidan effectively reduced the intracellular reactive oxygen species level and improved the viability of the UVB-irradiated cells without any cytotoxic effects. Moreover, fucoidan significantly decreased UVB-induced apoptosis in HaCaT cells by regulating the protein expression of Bax, Bcl-xL, PARP, and Caspase-3 in HaCaT cells in a concentration-dependent manner. The anti-melanogenesis effect of fucoidan was evaluated in B16F10 melanoma cells that had been stimulated with alpha-melanocyte-stimulating hormone (α-MSH), and fucoidan treatment remarkably inhibited melanin synthesis in α-MSH-stimulated B16F10 cells. Further studies indicated that fucoidan significantly suppressed the expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and-2) in B16F10 cells by down-regulating microphthalmia-associated transcription factor (MITF) through regulation of the ERK–MAPK (extracellular signal regulated kinase-mitogen activated protein kinase) pathway. Taken together, these results suggest that fucoidan isolated from H. fusiforme possesses strong anti-photoaging and anti-melanogenesis activities and can be used as an ingredient in the pharmaceutical and cosmeceutical industries.


2005 ◽  
Vol 289 (2) ◽  
pp. C257-C263 ◽  
Author(s):  
Taylor B. Guo ◽  
Jiawei Lu ◽  
Tie Li ◽  
Zhenyu Lu ◽  
Guotong Xu ◽  
...  

Voltage-gated K+channel activities are involved in regulating growth factor-stimulated cell proliferation in a variety of cell types. Here we report that suppression of a voltage-gated K+channel with 4-aminopyridine (4-AP), barium, and tetraethylammonium inhibited both EGF- and insulin-stimulated myeloblastic leukemia ML-1 cell proliferation in a concentration-dependent manner. Both MAPK/ERK and Akt pathways are known to mediate cell proliferative signals of a variety of growth factors including insulin. In serum-starved ML-1 cells, insulin rapidly stimulated phosphorylation of ERK1/2 and Akt, and the phosphorylation levels peaked ∼30 min after treatment. Pretreatment of ML-1 cells with 4-AP potently and dose-dependently prevented phosphorylation of ERK1/2 and Akt. However, insulin-induced activation of the Akt pathway also played a role in promoting ML-1 cell proliferation. Flow cytometry analysis revealed that although ML-1 cells were primarily arrested at G1phase by serum starvation for 36 h, they reentered the cell cycle after treatment with serum or insulin for 24 h. However, concomitant 4-AP treatment was able to attenuate cell cycle progression in synchronized ML-1 cells stimulated with growth factors. Our results strongly suggest that a 4-AP-sensitive K+channel activity plays an important role in controlling proliferation of ML-1 cells by affecting the activation of multiple signal transduction processes induced by insulin.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Da Hee Choi ◽  
Hyung Seo Hwang

Abstract Psoriasis is a chronic inflammatory skin disease that causes erythema, scale, and invasion due to excessive proliferation of keratinocyte and vascular deformation of the upper part of the dermis. Recently, it has been reported that brazilin, an active compound of Caesalpinia sappan L., possesses anti-inflammatory activity in mouse macrophage. However, little is known about its effect or anti-inflammatory activity on psoriasis dermatitis. Thus, the objective of this study was to determine anti-inflammatory activity of brazilin in TNF-α-induced human keratinocyte (HaCaT) widely used as a model of psoriatic dermatitis. First, CCK-8 assay was performed to determine cytotoxicity of brazilin in HaCaT cells and cytotoxicity was not observed up to 7 μg/mL concentrations. Brazilin decreased mRNA expression levels of inflammatory cytokines such as IL-1α, IL-1β, IL-6, IL-8 and TNF-α in a concentration dependent manner. Brazilin also significantly reduced phosphorylation of I-κB, Akt, and MAPKs such as ERK, JNK, p38 and STAT3 in immortalized human keratinocytes (HaCaT) induced by TNF-α. In addition, inflammation causes the weakness of the skin barrier structure and increase cell permeability, stimulating serious problems in skin moisturizing. Thus, we observed changes of skin permeability in TNF-α induced inflammatory condition through transepithelial electrical resistance (TEER) assay. While TNF-α induced inflammation caused reduction of TEER value (ohm (Ω) × cm2), it was recovered by treatment with brazilin in a concentration-dependent manner. These results strongly imply that brazilin can reinforce the skin barrier due to its anti-inflammatory activity. Therefore, brazilin could be a promising candidate for treating psoriasis dermatitis.


2019 ◽  
Author(s):  
Kamila Delaney ◽  
Maude Strobino ◽  
Joanna M. Wenda ◽  
Andrzej Pankowski ◽  
Florian A. Steiner

AbstractSubstitution of lysine 27 with methionine in histone H3.3 is a recently discovered driver mutation of pediatric high-grade gliomas. Mutant tumor cells show decreased levels and altered distribution of H3K27me3. How these chromatin changes are established genome-wide and lead to tumorigenesis only in specific tissues remains unclear. Here we show that H3.3K27M-mediated alterations in H3K27me3 distribution result in ectopic DNA replication and cell cycle progression of germ cells in Caenorhabditis elegans. By genetically inducing changes in the H3.3 distribution, we demonstrate that both H3.3K27M oncohistone incorporation and pre-existing H3K27me3 act locally and antagonistically on Polycomb Repressive Complex 2 (PRC2) in a concentration-dependent manner, explaining the observed H3K27me3 distribution in mutant cells. The altered heterochromatin patterns lead to extensive misregulation of gene expression. Through unbiased genetic screening, we found that inhibiting JNK pathway components, which are overexpressed in H3.3K27M cells, suppresses the ectopic DNA replication and cell cycle progression without rescuing the altered H3K27me3 distribution. Moreover, we show that JNK inhibition suppresses the replicative fate in human tumor-derived H3.3K27M cells, thus establishing C. elegans as a powerful model for the identification of potential drug targets for treatment of H3.3K27M tumors.


2008 ◽  
Vol 295 (5) ◽  
pp. C1409-C1416 ◽  
Author(s):  
Rong Tao ◽  
Chu-Pak Lau ◽  
Hung-Fat Tse ◽  
Gui-Rong Li

Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine; however, their cellular physiology is not fully understood. The present study aimed at exploring the potential roles of the two dominant functional ion channels, intermediate-conductance Ca2+-activated potassium (IKCa) and volume-sensitive chloride ( ICl.vol) channels, in regulating proliferation of mouse MSCs. We found that inhibition of IKCa with clotrimazole and ICl.vol with 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) reduced cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific short interference (si)RNAs significantly reduced IKCa or ICl.vol density and channel protein and produced a remarkable suppression of cell proliferation (by 24.4 ± 9.6% and 29.5 ± 7.2%, respectively, P < 0.05 vs. controls). Flow cytometry analysis showed that mouse MSCs retained at G0/G1 phase (control: 51.65 ± 3.43%) by inhibiting IKCa or ICl.vol using clotrimazole (2 μM: 64.45 ± 2.20%, P < 0.05) or NPPB (200 μM: 82.89 ± 2.49%, P < 0.05) or the specific siRNAs, meanwhile distribution of cells in S phase was decreased. Western blot analysis revealed a reduced expression of the cell cycle regulatory proteins cyclin D1 and cyclin E. Collectively, our results have demonstrated that IKCa and ICl.vol channels regulate cell cycle progression and proliferation of mouse MSCs by modulating cyclin D1 and cyclin E expression.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1545
Author(s):  
Hwa-Young Song ◽  
Da-Eun Jeong ◽  
Mina Lee

The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Author(s):  
Pranav Gupta ◽  
Radhika V. Kumar ◽  
Chul-Hoon Kwon ◽  
Zhe-Sheng Chen

Background: DNA topoisomerases are a class of enzymes that play a critical role in fundamental biological processes of replication, transcription, recombination, repair and chromatin remodeling. Amsacrine (m-AMSA), the best-known compound of 9-anilinoacridines series was one of the first DNA-intercalating agents to be considered as a Topoisomerase II inhibitor. Objective: A series of sulfur containing 9-anilinoacridines related to amsacrine were synthesized and evaluated for their anticancer activity. Methods: Cell viability was assessed by the MTT assay. The topoisomerase II inhibitory assay was performed using the Human topoisomerase II Assay kit and flow cytometry was used to evaluate the effects on cell cycle of K562 cells. Molecular docking was performed using Schrödinger Maestro program. Results: Compound 36 was found to be the most cytotoxic of the sulfide series against SW620, K562, and MCF-7. The limited SAR suggested the importance of the methansulfonamidoacetamide side chain functionality, the lipophilicity and relative metabolic stability of 36 in contributing to the cytotoxicity. Topoisomerase II α inhibitory activity appeared to be involved in the cytotoxicity of 36 through inhibition of decatenation of kinetoplast DNA (kDNA) in a concentration dependent manner. Cell cycle analysis further showed the Topo II inhibition through accumulation of K562 cells in G2/M phase of cell cycle. Docking of 36 into the Topo II α-DNA complex suggested that it may be an allosteric inhibitor of Topo II α. Conclusion: Compound 36 exhibits anticancer activity by inhibiting topoisomerase II and it could further be evaluated in in vivo models.


2021 ◽  
Vol 22 (19) ◽  
pp. 10777
Author(s):  
Donghee Kim ◽  
Hyo-Jin Kim ◽  
Jin-Ok Baek ◽  
Joo-Young Roh ◽  
Hee-Sook Jun

Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document