scholarly journals Performance and Microstructural Analysis of Lightweight Concrete Blended with Nanosilica under Sulfate Attack

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Paola Vargas ◽  
Natalia A. Marín ◽  
Jorge I. Tobón

The influence of two lightweight aggregates (LWA) on concrete and the effects of cement substitution for nanosilica (NS) on the interfacial transition zone (ITZ) and cementitious matrix of concrete in resistance to attacks by magnesium sulfate (MgSO4) are researched in this work. The aggregates evaluated were perlite, which is a lightweight aggregate of open porous structure, and expanded clay (aliven) with closed porous structure. The variables included in the study were replacement percentage of coarse aggregates by lightweight coarse aggregates (0 and 100% by volume) and replacement percentage of cement by nanosilica (0 and 10% by weight). In the dosage of the mixtures, water/cementitious-material ratio constant of 0.35 was used. The LWA were characterized by XRD, XRF, and SEM techniques. Compressive strength, water absorption, and volume change in magnesium sulfate solution (according to ASTM C1012 for a period of 15 weeks) of lightweight concretes were evaluated. It was found that the nanosilica had effect on refinement in the pore system; however, the main incidence on the compressive strength and durability of lightweight concrete (LWC) was defined by the characteristics of lightweight aggregate used in its preparation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suman Kumar Adhikary ◽  
Žymantas Rudžionis ◽  
Simona Tučkutė ◽  
Deepankar Kumar Ashish

AbstractThis study is aimed to investigate the effect of carbon nanotubes on the properties of lightweight aggregate concrete containing expanded glass and silica aerogel. Combinations of expanded glass (55%) and hydrophobic silica aerogel particles (45%) were used as lightweight aggregates. Carbon nanotubes were sonicated in the water with polycarboxylate superplasticizer by ultrasonication energy for 3 min. Study results show that incorporating multi-wall carbon nanotubes significantly influences the compressive strength and microstructural performance of aerogel based lightweight concrete. The addition of carbon nanotubes gained almost 41% improvement in compressive strength. SEM image of lightweight concrete shows a homogeneous dispersal of carbon nanotubes within the concrete structure. SEM image of the composite shows presence of C–S–H gel surrounding the carbon nanotubes, which confirms the cites of nanotubes for the higher growth of C–S–H gel. Besides, agglomeration of carbon nanotubes and the presence of ettringites was observed in the transition zone between the silica aerogel and cementitious materials. Additionally, flowability, water absorption, microscopy, X-ray powder diffraction, and semi-adiabatic calorimetry results were analyzed in this study.


2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


2018 ◽  
Vol 195 ◽  
pp. 01021
Author(s):  
Fedya Diajeng Aryani ◽  
Tavio ◽  
I Gusti Putu Raka ◽  
Puryanto

Lightweight concrete is one of the options used in construction in lieu of the traditional normal-weight concrete. Due to its lightweight, it provides lighter structural members and thus, it reduces the total weight of the structures. The reduction in weight resulting in the reduction of the seismic forces since its density is less than 1840 kg/m3. Among all of the concrete constituents, coarse aggregate takes the highest portion of the concrete composition. To produce the lightweight characteristics, it requires innovation on the coarse aggregate to come up with low density of concrete. One possible way is to introduce the use of the artificial lightweight aggregate (ALWA). This study proposes the use of polystyrene as the main ingredient to form the ALWA. The ALWA concrete in the study also used two types of Portland cements, i.e. OPC and PPC. The ALWA introduced in the concrete comprises various percentages, namely 0%, 15%, 50%, and 100% replacement to the coarse aggregate by volume. From the results of the study, it can be found that the compressive strength and the modulus of elasticity of concrete decreased with the increase of the percentage of the ALWA used to replace the natural coarse aggregate.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3547
Author(s):  
Youngkeun Cho ◽  
Joo Hyung Kim ◽  
Sanghwa Jung ◽  
Yoonseok Chung ◽  
Yeonung Jeong

In this study, the changes in mass, compressive strength, and length of blended mortars were analyzed to investigate their sulfate resistance according to the ground granulated blast furnace slag (GGBFS) blending ratio and type of sulfate solution applied. All alkali-activated mortars showed an excellent sulfate resistance when immersed in a sodium sulfate (Na2SO4) solution. However, when immersed in a magnesium sulfate (MgSO4) solution, different sulfate resistance results were obtained depending on the presence of GGBFS. The alkali-activated GGBFS blended mortars showed a tendency to increase in mass and length and decrease in compressive strength when immersed in a magnesium sulfate solution, whereas the alkali-activated FA mortars did not show any significant difference depending on the types of sulfate solution applied. The deterioration of alkali-activated GGBFS blended mortars in the immersion of a magnesium sulfate solution was confirmed through the decomposition of C–S–H, which is the reaction product from magnesium ions, and the formation of gypsum (CaSO4·2H2O) and brucite (Mg(OH)2).


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Ke-cheng He ◽  
Rong-xin Guo ◽  
Qian-min Ma ◽  
Feng Yan ◽  
Zhi-wei Lin ◽  
...  

In order to improve the spalling resistance of lightweight aggregate concrete at high temperature, two types of modified materials were used to modify clay ceramsite lightweight aggregates by adopting the surface coating modification method. Spalling of the concrete specimens manufactured by using the modified aggregates was observed during a temperature elevation. Mass loss and residual axial compressive strength of the modified concrete specimens after exposure to elevated temperatures were also tested. Concrete specimens consisting of ordinary clay ceramsites and crushed limestone were manufactured as references for comparison. The results showed that the ordinary lightweight concrete specimens and the crushed limestone concrete specimens were completely spalled after exposure to target temperatures above 400°C and 1000°C, respectively, whereas the modified concrete specimens remained intact at 1200°C, at which approximately 25% to 38% of the residual compressive strength was retained. The results indicated that the modified lightweight concrete specimens have exhibited superior mechanical properties and resistance to thermal spalling after exposure to elevated temperatures.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Teewara Suwan ◽  
Pitiwat Wattanachai

Global warming is a vital issue addressed to every sector worldwide, including the construction industry. To achieve the concept of green technology, many attempts have been carried out to develop low-carbon footprint products. In the construction sector, Autoclaved Aerated Concrete (AAC) has become more popular and been manufactured to meet the construction demand. However, errors from manufacturing process accounted for approximately 3 to 5% of the AAC production. The development of AAC waste as lightweight aggregate in concrete is one of the potential approaches which was extendedly studied in this paper. The results showed that the compressive strength of AAC-LWA concrete was decreased with an increase in volume and coarse size. The optimum mix proportion was the AAC aggregate size of 1/2′′ to 3/8′′ with 20 to 40% replacement to normal weight aggregate. Internal curing by AAC-LWA was also observed and found to provide sufficient water inside the specimens, leading to an achievement in higher compressive strength. The main goal of this study is not only utilising unwanted wastes from industry (recycling of waste materials) but also building up a new knowledge of using AAC-LWA as an internal curing agent as well as the production of value-added lightweight concrete products.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


2021 ◽  
Author(s):  
Chaoming PANG ◽  
Xinxin MENG ◽  
Chunpeng ZHANG ◽  
Jinlong PAN

Abstract Shrinkage of foam concrete can easily cause cracking and thus makes it difficult for a manufacturer to maintain quality. The density of lightweight aggregate concrete is too high to meet specifications for lightweight and thermal insulation for wallboard. Two types of concrete with dry density in the range 1000–1200 kg/m3 for use in wallboard were designed and prepared using foam and lightweight aggregate. The properties of porous lightweight aggregate concrete with core-shell non-sintered lightweight aggregate were compared with sintered lightweight aggregate concrete along with several dimensions. The two aggregates were similar in particle size, density, and strength. The effects of each aggregate on the workability, compressive strength, dry shrinkage, and thermal conductivity of the lightweight concrete were analyzed and compared. Pore structures were determined by mercury intrusion porosimetry and X-ray computed tomography. Compressive strength ranged from 7.8 to 11.8 MPa, and thermal conductivity coefficients ranged from 0.193 to 0.219 W/m/K for both types of concrete. The results showed that the core-shell non-sintered lightweight aggregate bonded better with the paste matrix at the interface transition zone and had a better pore structure than the sintered lightweight aggregate concrete. Slump flow of the core-shell non-sintered lightweight aggregate concrete was about 20% greater than that of the sintered lightweight aggregate concrete, 28d compressive strength was about 10% greater, drying shrinkage was about 10% less, and thermal conductivity was less. Porous lightweight aggregate concrete using core-shell non-sintered lightweight aggregate performs well when used in wallboard because of its low density, high thermal insulation, and improved strength.


Sign in / Sign up

Export Citation Format

Share Document