scholarly journals Improvement of Corrosion Behavior of Nanostructured Ni Coating by Jet Electrodeposition and Laser Remelting

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Hui Fan ◽  
Yangpei Zhao ◽  
Shankui Wang

An effective method to improve corrosion resistance for the nickel coating on the stainless steel(1Cr18Ni9) is described. The nickel coating was predeposited on the 1Cr18Ni9 by using the jet electrodeposition technology. Then the laser remelting was conducted on the predeposited Ni coating in order to strengthen the coating’s microstructure and the interface between the substrate and the Ni coating. The experimental results revealed that, at current density of 40 A/dm2, the deposited coating had the optimal corrosion resistance because of refined grains and dense interior-structure. After laser remelting, the bonding state between the coating and substrate evolved to a new metallurgical combination from originally mechanical combination. The corrosion rate comparison indicated that Ni coating with compound process of jet electrodeposition and laser remelting had higher corrosion resistance compared with bare 1Cr18Ni9 as well as jet electrodeposited Ni coating.

2014 ◽  
Vol 896 ◽  
pp. 245-248 ◽  
Author(s):  
Candra Kurniawan ◽  
Hayati M.A. Sholihat ◽  
Kemas Ahmad Zaini Thosin ◽  
Muljadi ◽  
Prijo Sardjono

Despite of its excellence magnetic quality, one of the critical properties of PrFeB based permanent magnet is a low corrosion resistance so it can be oxidized easily which can reduce its magnetic properties. In this study, Nickel coating has been performed for bonded PrFeB magnet by the electroplating method using Nickel-Watts bath-type as the electrolyte to improve the corrosion resistance. The varying amount of the electrolyte compounds used to have the optimized composition indicated by the corrosion resistance measurement. The solution composition used was NiSO4 (230-380 g/L), NiCl2 (30-60 g/L), and H3BO3 (30 and 45 g/L) with a fixed value of other parameters. Characterization used including the immersion corrosion test, microstructure analysis, and magnetic properties. Based on the corrosion rate measurement, the highest corrosion resistant of Nickel coated PrFeB magnet achieved from the electrolyte composition of NiSO4: NiCl2: H3BO3 = 380: 60: 30 g/L with a plating time and current density (J) of 60 minutes and 40 mA/cm2 respectively. The corrosion rate data showed that the Nickel metal coating can improve the corrosion resistance of bonded PrFeB magnet up to 29 times than of the substrate. The SEM images showed that the thickness of the Nickel coating on the optimum electrolyte composition was in average value of 35.1 µm. The overall samples has a magnetic remanence value (Br) reached ≥ 6 kG, so it has enough properties to be applied in devices such as generators and electric motors.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4965
Author(s):  
Congwei Li ◽  
Jialei Zhu ◽  
Zhihai Cai ◽  
Le Mei ◽  
Xiangdong Jiao ◽  
...  

Combined with the technologies of underwater local dry laser cladding (ULDLC) and underwater local dry laser remelting (ULDLR), a duplex stainless steel (DSS) coating has been made in an underwater environment. The phase composition, microstructure, chemical components and electrochemical corrosion resistance was studied. The results show that after underwater laser remelting, the phase composition of DSS coating remains unchanged and the phase transformation from Widmanstätten austenite + intragranular austenite + (211) ferrite to (110) ferrite occurred. The ULDLR process can improve the corrosion resistance of the underwater local dry laser cladded coating. The corrosion resistance of remelted coating at 3 kW is the best, the corrosion resistance of remelted coating at 1kW and 5kW is similar and the corrosion resistance of (110) ferrite phase is better than grain boundary austenite phase. The ULDLC + ULDLR process can meet the requirements of efficient underwater maintenance, forming quality control and corrosion resistance. It can also be used to repair the surface of S32101 duplex stainless steel in underwater environment.


2014 ◽  
Vol 598 ◽  
pp. 90-93 ◽  
Author(s):  
Xing Sheng Tong ◽  
Ting Zhang ◽  
Wei Ye

In this study, in order to explore a suitable method to obtain a better wear resistance and corrosion resistance of austenitic stainless steel, low temperature plasma carburizing technology has been studied. Research on the properties of austenitic stainless steel under different carburizing atmosphere proportion, with hardness, wear resistance and corrosion resistance as the properties characterization. The results shows that C3H8:H2=1:40 have better properties with the hardness of 950 HV0.05, the friction coefficient of about 0.25, which showed a better wear resistance. And also the corrosion rate of about 20.3g/m2·h showed a better corrosion resistance.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Salinas ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
M. A. Espinoza-Medina

The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3layer.


Author(s):  
Haixia Cheng ◽  
Bowen Xu ◽  
Jianfeng Zhao ◽  
Mingbo Qiu ◽  
Guibin Lou ◽  
...  

Selective laser melting (SLM) is an important method in additive manufacturing. SLM has obvious advantages for the fabrication of metal parts with complex structure that cannot be processed directly and are manufactured in relatively low amounts. However, the surfaces of the SLM-formed parts contain more adhesive particles and pores than those manufactured by traditional methods, leading to the poor corrosion resistance of the parts and preventing the widespread use of SLM. To solve these problems, jet electrochemical machining and jet electrodeposition combined processing techniques were investigated for the treatment of the substrate surface in this work. Jet electrochemical machining was used to remove the surface defects of the SLM-formed parts, and the results were compared with the traditional sandblasting and sandpaper grinding surface treatment methods. Then, the nickel coating was deposited on the surface of the SLM-formed parts using jet electrodeposition to protect the surface and extend the service life of the parts. The mechanisms of the different processing techniques were analyzed, and properties such as the substrate morphology, coating morphology, corrosion resistance of the coating, and adhesion of the coating were compared. The results show that holes, adhesive particles and other defects are still present on the substrate surface after sandpaper grinding and sandblasting and affect the quality of the nickel coating. After electrochemical machining, the SLM surface defects were almost completely removed, forming a uniform microporous structure that interlocked with the nickel coating. The coating was smooth and dense and showed the best corrosion resistance and binding force. In 3.5 wt% NaCl solution, the corrosion potential reached −0.196 V, and the maximum binding force reached 35 N.


2013 ◽  
Vol 794 ◽  
pp. 575-582 ◽  
Author(s):  
S. Ningshen ◽  
M. Sakairi ◽  
K. Sukuki ◽  
S. Ukai

An oxide dispersion strengthened steels are one of the most promising high temperatures, and high performance advanced structural material being developed for future fast reactors and high-temperature Generation IV reactors. In the present work, the corrosion resistance and its correlation with the passive film compositions of 11% Cr F/M and 9-15% Cr (with Zr or Hf) ODS steels is examined and compared with AISI type 304L stainless steel in boiling 60 - 62% (~13 M) HNO3. The corrosion rate measured in 62% HNO3 for 240 h of 11% Cr F/M, 9% Cr and 15% Cr (Zr) ODS steels show high corrosion rate. On the other hand, low corrosion rate was observed in 304L stainless steel (0. 21 to 23 mm y-1). However, severe intergranular corrosion attack was revealed in type 304L SS after 240 h exposure, but none in ODS steels. Such an intergranular corrosion attack seen in type 304L stainless steel is undesirable. On the contrary, low corrosion rate (0.04 0.15 mm y-1) of 15% Cr (Hf) ODS steel in 3 M, 6 M and 9 M HNO3, comparable to that of type 304L stainless steel was observed. The improved corrosion resistance of 15% Cr (Hf) ODS steel was attributed to enrich (20 at. %) and protective Al2O3 layer formation in addition to Cr2O3 in the passive film.


2014 ◽  
Vol 556-562 ◽  
pp. 162-165 ◽  
Author(s):  
Shi Dong Zhu ◽  
Hai Xia Ma ◽  
Jin Ling Li ◽  
Zhi Gang Yang

Effects of elemental sulfur on corrosion behavior of super 13Cr martensitic stainless steel were investigated by utilizing weight loss test, and the micro morphologies and chemical elements of corrosion scales were characterized by using SEM and EDS. The results showed that corrosion resistance of super 13Cr stainless steel was aggravated by the hydrolytic action of sulfur, the corrosion rate of super 13Cr stainless steel increased with the increasing of sulfur content, and firstly increased and then decreased with the increasing of temperature due to the activated adsorption and existential state of sulfur at the different temperatures.


Author(s):  
Amit Mahajan ◽  
Gurpreet Singh ◽  
Sandeep Devgan ◽  
Sarabjeet Singh Sidhu

Cobalt-chromium alloy (F-90) and duplex stainless steel (DSS-2205) belong to the family of metallic biomaterials, which are frequently used for the manufacture of dental prosthetics, artificial implants including knee and hip joints. This article addresses the investigation highlights of electrical discharge machining (EDM) of Co-Cr alloy and duplex stainless steel using different electrode materials for the evaluation of optimum machining parameters. The samples with superior machining performance and surface integrity were analyzed by electrochemical corrosion testing and found that the EDM treated samples portrayed a notable improvement in the corrosion resistance compared to bare metal. Our results demonstrated that both the substrates i.e. Co-Cr alloy and DSS-2205 were dominantly affected by the intensity of the applied current, and participated in the material removal rate with a contribution of 93.81% (23.37 mm3/min., Co-Cr alloy) and 87.32% (39.76 mm3/min., DSS-2205) respectively. However, the surface roughness of the machined Co-Cr alloy (1.080 µm) was majorly influenced by the current (contribution: 67.24%) and electrode (contribution: 28.27%). Whereas, pulse-on (contribution: 58.37%) and electrode (contribution: 30.52%) were significant for the surface roughness (1.150 µm) of the machined DSS-2205. Moreover, the machined surface also demonstrates the porosity (∼3 to ∼5 µm) and formation of intermetallic oxides, carbon phases on the samples machined at a higher value of current i.e. 16 Ampere. Field emission scanning electron microscopy and X-ray diffractometer were used to scrutinize the surface topography and compositional analysis of the machined substrates. The alternation of the substrate surface observed helpful in enhancing the corrosion resistance of Co-Cr alloy and duplex stainless steel by 80.88% (corrosion rate: 0.00029 mm/year) and 96% (corrosion rate: 0.00763 mm/year), comparative to their respective untreated samples.


2013 ◽  
Vol 203-204 ◽  
pp. 59-62 ◽  
Author(s):  
Pawel Szabracki ◽  
Tomasz Lipiński

Stainless steels are used widely in many industries. A duplex microstructure offers a combination of advantages, including resistance to crevice and stress corrosion, reduced susceptibility to hot cracking in comparison with fully austenitic structures and excellent tensile strength. The paper discusses the effect of aging on the microstructure and corrosion resistance of X2CrNiMoN25-7-4 super duplex stainless steel. Low and predictable corrosion rate is an important parameter for steels operating in aggressive environments. Resistance to intergranular corrosion expressed by corrosion rate (mm/year) was determined in accordance with standard PN-EN ISO 3651-1. Metallographic studies were carried out to evaluate surface degradation and intergranular corrosion. The results support an evaluation of the impact that phase fraction changes caused by aging have on resistance to intergranular corrosion. The results of the corrosion analysis were used to develop mathematical models describing changes in corrosion rate over time for different phase fractions.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 891
Author(s):  
Heon-Young Ha ◽  
Tae-Ho Lee ◽  
Sung-Dae Kim ◽  
Jae Hoon Jang ◽  
Joonoh Moon

On newly developed Febalance-18Cr-7Mn-3Mo-3W-0.4N-(0.03, 0.57)Ni (in wt%) lean duplex stainless steels, the microstructure, element partitioning behavior, and resistance to pitting corrosion were investigated. After solution treatments, the two alloys were found to have similar microstructures in terms of phase fraction and grain size, and have a precipitation-free matrix. The polarization tests revealed that the addition of Ni was beneficial to improve the resistance to pitting corrosion, which was confirmed by the rise in pitting and repassivation potentials. The uniform corrosion behavior and galvanic corrosion rate of the matrix were investigated to explain the improved pitting corrosion resistance of the Ni-added lean duplex stainless steel. As a result, it was found that the addition of Ni enhanced the resistance to uniform corrosion by reducing the galvanic corrosion rate between the ferrite and austenite phases in the lean duplex stainless steel; thus, the pit growth rate was decreased, leading to improvement of the resistance to pitting corrosion.


Sign in / Sign up

Export Citation Format

Share Document