scholarly journals miR-34a Inhibits Cell Proliferation by Targeting SATB2 in Hepatocellular Carcinoma

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Wu ◽  
Zhixi Li ◽  
Youyu Wang ◽  
Xueming Ju ◽  
Rui Huang

Hepatocellular carcinoma (HCC) is the most common type of malignancy of the liver and has been reported as the third most frequent cause of cancer associated death worldwide. Accumulating evidence showed that the expression of miR-34a was abnormal in HCC patients; however, the role of miR-34a in HCC is not clear. In this study, we have observed low expression of the miR-34a in both HCC tissues and hepatoma cell line as compared to normal control. Further to investigate the role of miR-34a in HCC development, HepG2 cells were transfected with miR-34a mimic. Following transfection, miR-34a expression was significantly increased, which further repressed proliferation of HepG2 cells. Bioinformatics, Luciferase Reporter, RT-qPCR, and western blotting assays indicated that special AT-rich sequence-binding protein-2 (SATB2) is a direct target of miR-34a in HCC cells. There was a negative correlation between the expression levels of SATB2 and miR-34a. Investigation into the molecular mechanism indicated that miR-34a regulated cell proliferation through inhibiting SATB2. Therefore, the results of the present study may improve understanding regarding the role of miR-34a in regulating cell proliferation and contribute to the development of novel therapy of HCC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


1994 ◽  
Vol 303 (2) ◽  
pp. 507-510 ◽  
Author(s):  
J Fandrey ◽  
S Frede ◽  
W Jelkmann

The addition of exogenous H2O2 inhibited hypoxia-induced erythropoietin (Epo) production in the human hepatoma cell line HepG2. Likewise, elevation of endogenous H2O2 levels by the addition of menadione or the catalase inhibitor, aminotriazole, dose-dependently lowered Epo production. The inhibitory effect of exogenous H2O2 on Epo formation could be completely overcome by co-incubation with catalase. When GSH levels in HepG2 cells were lowered, Epo production was more susceptible to H2O2-induced inhibition, indicating that H2O2 might affect thiol groups in regulatory proteins. Endogenous production of H2O2 in HepG2 cells was dependent on the pericellular O2 tension, being lowest under conditions of hypoxia. Our results support the hypothesis that an H2O2-generating haem protein might be part of the O2 sensor that controls Epo production. High H2O2 levels under conditions of normoxia suppress, whereas lower levels in hypoxic cells allow epo gene expression.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 757-769 ◽  
Author(s):  
Li Zhang ◽  
Guozhan Jia ◽  
Binya Shi ◽  
Guanqun Ge ◽  
Hongbin Duan ◽  
...  

Background: Protease serine 8 (PRSS8), a trypsin-like serine peptidase, has been shown to function as a tumour suppressor in various malignancies. The present study aimed to investigate the expression pattern, prognostic value and the biological role of PRSS8 in human hepatocellular carcinoma (HCC). Methods: PRSS8 expression in 106 HCC surgical specimens was examined by Real-time polymerase chain reaction (PCR) and immunohistochemistry, and its clinical significance was analysed. The role of PRSS8 in cell proliferation, apoptosis and invasion were examined in vitro and in vivo. Results: PRSS8 mRNA and protein expression were decreased in most HCC tumours from that in matched adjacent non-tumour tissues. Low intratumoral PRSS8 expression was significantly correlated with poor overall survival (OS) in patients with HCC (P = 0.001). PRSS8 expression was an independent prognostic factor for OS (hazard ratio [HR] = 1.704, P = 0.009). Furthermore, restoring PRSS8 expression in high metastatic HCCLM3 cells significantly inhibited cell proliferation and invasion. In contrast, silencing PRSS8 expression in non-metastatic HepG2 cells significantly enhanced cell growth and invasion. Moreover, our in vivo data revealed that attenuated PRSS8 expression in HepG2 cells greatly promoted tumour growth, while overexpression of PRSS8 remarkably inhibited tumour growth in an HCCLM3 xenograft model. Enhanced cell growth and invasion ability mediated by the loss of PRSS8 expression was associated with downregulation of PTEN, Bax and E-cadherin and an upregulation in Bcl-2, MMP9 and N-cadherin. Conclusions: Our data demonstrate that PRSS8 may serve as a tumour suppressor in HCC progression, and represent a valuable prognostic marker and potential therapeutic target for HCC.


2020 ◽  
Vol 19 (1) ◽  
pp. 39-44
Author(s):  
Bangming Pu ◽  
Yong Cao ◽  
Yan Li ◽  
Li Tang ◽  
Jiyi Xia ◽  
...  

Purpose: To explore the molecular function of miR-196b-5p in hepatocellular carcinoma (HCC).Methods: MiR-196b-5p expression levels in HCC tissue samples were assessed by qRT-PCR. MiR-196b-5p was knocked-down or over-expressed in HepG2 cells by transfecting the cells with plasmids expressing either a miR-196b-5p inhibitor or mimic, respectively, while cell proliferation was  assessed by MTT assay. The interaction of miR-196b-5p with target molecules was confirmed using luciferase reporter assay. Cell cycle was investigated by flow cytometry, while NFκBIA expression was assessed by western blotting.Results: MiR-196b-5p was over-expressed in HCC, and miR-196b-5p expression levels in patients with HCC were related to tumor grade. MiR-196b-5p over-expression promoted cell proliferation and colony formation and suppressed cell cycle arrest and apoptosis. The results of luciferase reporter assay showed that miR-196b-5p reduced NFκBIA expression in HepG2 cells by binding to a response element in the 3′ UTR of NFκBIA. Further investigation showed that NFκBIA interacts with NFκB1 and reduces the concentration of NFκB1 in HepG2 cells. The promoter of ATP-binding cassette sub-family B member 1 (ABCB1) was also targeted and bound by NFκB1, which altered the expression of ABCB1 in HepG2 cells.Conclusion: MiR-196b-5p regulates cell proliferation in drug-resistant HCC cell lines via activation of the NFκB/ABCB1 signaling pathway. Keywords: Hepatocellular carcinoma, miR-196b-5p, NFκBIA, NFκB1, ABCB1


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Cuimin Chen ◽  
Chunyan Zhao ◽  
Cao Gu ◽  
Xiao Cui ◽  
Jinhui Wu

Abstract As a major cause of blindness, diabetic retinopathy (DR) is often found in the developed countries. Our previous study identified a down-regulated miRNA: miR-144-3p in response to hyperglycemia. The present study aims to investigate the role of miR-144-3p in proliferation of microvascular epithelial cells. Endothelial cells were treated with different concentrations of glucose, after which miR-144-3p were detected with real-time PCR assay. MiR-144-3p mimics or inhibitors were used to increase or knockdown the level of this miRNA. Western blotting assay and ELISA assay were used to measure the expression and concentration of VEGF protein. 5-Bromo-2-deoxyUridine (BrdU) labeled cell cycle assay was used to detect cells in S phase. MiRNA targets were predicted by using a TargetScan tool, and were further verified by luciferase reporter assay. In the present study, we focussed on a significantly down-regulated miRNA, miR-144-3p, and investigated its role in high glucose (HG) induced cell proliferation. Our data showed that miR-144-3p mimics significantly inhibited HG induced cell proliferation and reduced the percentage of cells in S phase. HG induced up-regulation of VEGF was also prohibited by miR-144-3p mimics. Through wound-healing assay, we found that miR-144-3p suppressed cell migration after HG treatments. Moreover, we predicted and proved that fibroblast growth factor (FGF)16 is a direct target of miR-144-3p. Finally, miR-144-3p attenuated HG induced MAPK activation. In conclusion, we demonstrated that miR-144-3p inhibited high glucose-induced cell proliferation through suppressing FGF16 and MAPK signaling pathway, suggesting a possible role of miR-144-FGF16 in the development of DR.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769431 ◽  
Author(s):  
Li Zhou ◽  
Shunai Liu ◽  
Ming Han ◽  
Shenghu Feng ◽  
Jinqiu Liang ◽  
...  

Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3′-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.


2022 ◽  
Vol 50 (1) ◽  
pp. 030006052110537
Author(s):  
Tianying Zheng ◽  
Xin Zhang ◽  
Yonggang Wang ◽  
Aijun Wang

Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.


2022 ◽  
Vol 12 (3) ◽  
pp. 461-470
Author(s):  
Gang Quan ◽  
Bo Ren ◽  
Jian Xu ◽  
Jie Zhou ◽  
Guo Wu ◽  
...  

<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title> We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration, apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis, proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>


Author(s):  
Baiyin Mu ◽  
Chenlan Lv ◽  
Qingli Liu ◽  
Hong Yang

Abstract There is emerging evidence that dysregulation of long non-coding RNAs (lncRNAs) is associated with hepatocellular carcinoma (HCC). Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) functions as an oncogenic regulator in various malignancies. Nonetheless, the potential role of ZEB1-AS1 in HCC remains poorly elucidated. Herein, qRT-PCR was employed for examining ZEB1-AS1, miR-299-3p and E2F1 mRNA expressions in HCC cells and tissues. MTT assay was performed to evaluate cell proliferation. Transwell assay was utilized for evaluating cancer cell migration and invasion. Western blot was employed for measuring E2F1 protein expression. What’s more, dual-luciferase reporter assay was utilized for verifying the targeting relationships between ZEB1-AS1 and miR-299-3p, as well as E2F1 and miR-299-3p. It was demonstrated that, in HCC tissues and cells, ZEB1-AS1 expression was markedly increased, and meanwhile, its high expression level is related to the unfavorable clinicopathologic indicators. ZEB1-AS1 overexpression facilitated HCC cell proliferation, migration and invasion, while its knockdown led to the opposite effects. In terms of mechanism, we discovered that ZEB1-AS1 could decoy miR-299-3p and up-regulate E2F1 expression. This work reveals the functions and mechanism of ZEB1-AS1 in HCC tumorigenesis and progression, which provides novel biomarkers and therapeutic targets for HCC.


Sign in / Sign up

Export Citation Format

Share Document