scholarly journals Enhancement of Immunoregulatory Function of Modified Bone Marrow Mesenchymal Stem Cells by Targeting SOCS1

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoming Zhang ◽  
Fei Hua ◽  
Ziying Yang ◽  
Yueqiu Chen ◽  
Xiaomei Teng ◽  
...  

Objective. The study aim to investigate the role of microRNA-155 (miR-155) on the immunoregulatory function of bone marrow mesenchymal stem cells (MSCs). Methods. MSCs were isolated from 2-week-old Sprague-Dawley rats and identified by flow cytometry using anti-CD29, anti-CD44, anti-CD34, and anti-CD45 antibodies. MSCs were transfected with miR155-mimics, miR155-inhibitor, and control oligos, respectively, and then cocultured with spleen mononuclear cells (SMCs). The mRNA levels of Th1, Th2, Th17, and Treg cell-specific transcription factors (Tbx21, Gata3, Rorc, and Foxp3, resp.) and the miR-155 target gene SOCS1 were detected by quantitative real-time PCR (qPCR) in SMCs. The proportion of CD4+ FOXP3+ Treg cells was detected by flow cytometry. In addition, the effects of MSCs transfected with miR-155 on the migration of rat SMCs were investigated by transwell chamber. Results. CD29 and CD44 were expressed in MSCs, while CD34 and CD45 were negative. The percentage of CD4+ FOXP3+ Treg cells in the SMC population was significantly higher compared with that noted in SMCs control group (p<0.001) following 72 hours of coculture with miR155-mimics-transfected SMCs. In contrast, the percentage of CD4+ FOXP3+ Treg cells in the SMCs cocultured with miR155-inhibitor-transfected MSCs was significantly lower compared with that noted in SMCs control group (p<0.001). MiR155-mimics-transfected MSCs inhibited the expression of Tbx21, Rorc, and SOCS1, while the expression of Gata3 and Foxp3 was increased. In contrast to the downregulation of the aforementioned genes, miR155-inhibitor-transfected MSCs resulted in upregulation of Tbx21, Rorc, and SOCS1 expression levels and inhibition of Gata3 and Foxp3. In the transwell assay, miR155-mimics-transfected MSCs exhibited lower levels of SMCs migration, while the miR155-inhibitor-transfected MSCs demonstrated significantly higher levels of migration, compared with the blank control group (p<0.01, resp.). Conclusion. miR-155 favors the differentiation of T cells into Th2 and Treg cells in MSCs, while it inhibits the differentiation to Th1 and Th17 cells.

2021 ◽  
Vol 21 ◽  
Author(s):  
Ezzatollah Fathi ◽  
Sheyda Azarbad ◽  
Raheleh Farahzadi ◽  
Sara Javanmardi

Background: Bone marrow mononuclear cells (BM-MNCs), as a collection of hematopoietic and mesenchymal stem cells (MSCs), are capable of producing all blood cell lineages. The use of cytokines, growth factors, or cells capable of secreting these factors will help in stimulating the proliferation and differentiation of these cells into mature cell lines. On the other hand, MSCs are multipotent stromal cells that can be differentiated into various cell lineages. Moreover, these cells can control the process of hematopoiesis by secreting cytokines and growth factors. The present study aimed to investigate the effect of BM-derived MSCs on the differentiation of MNCs based on the assessment of cell surface markers by flow cytometry analysis. Methods: For this purpose, the MNCs were purified from rat BM using density gradient centrifugation. After that, they were cultured, expanded, and characterized. Next, BM-derivedMSCs were co-cultured with MNCs and then were either cultured with MNCs alone (control group) or co-cultured MNCs with BM derived-MSCs (experimental group). Finally, they were collected on day 7 and subjected to flow cytometry analysis for granulocyte markers and ERK protein’s investigation. Results: It was found that the expression levels of CD34, CD16, CD11b, and CD18 granulocyte markers, as well as protein expression of ERK, have significantly increased in the experimental group compared to the control group. Conclusion: Therefore, it can be concluded that MSCs could affect the granulocyte differentiation of MNCs via ERK protein expression, which is a key component of the ERK signaling pathway.


2022 ◽  
Vol 12 (5) ◽  
pp. 1034-1039
Author(s):  
Xiaoxiang Wang ◽  
Lan Yu ◽  
Xing Xiong ◽  
Yao Chen ◽  
Bo Men

Bone marrow mesenchymal stem cells (BMSCs) are capable of multipolar differentiation and repairing injured tissues. Herein, we aimed to investigate the mechanism by how BMSCs modulate the apoptotic pathway in the acute pancreatitis (AP). In this study, primary BMSCs were cultured and administrated into 10 AP mice while 10 healthy mice were taken as a blank group and 10 AP mice as a control group. The mouse pancreatic tissues were assessed by HE staining and evaluated by pancreatitis score and serum amylase detection. Level of inflammatory factors CRP and TNF-α was measured by ELISA and PIPK1, PIPK3, MLKL and Caspase-8 expression was detected by RT-qPCR and Western blot. The pancreatitis score (7.29±1.36) and the serum amylase score of (453.66±103.67) mu/ml of BMSCs group was significantly higher than that of control group, indicating increased tissue repair after BMSCs treatment. BMSCs group exhibited a higher level of CRP (711.01±115.31) and TNF-α (132.81±22.13) in serum compared to control group (p < 0.05). PIPK1, PIPK3, and MLKL expression in BMSCs group decreased (p < 0.05) whereas Caspase-8 was increased (p < 0.05). On the other hand, BMSCs group presented upregulated PIPK1, PIPK3, and MLKL (p < 0.05) and downregulated Caspase-8 (p < 0.05). In conclusion, BMSCs regulate cell apoptosis by upregulating Caspase-8 expression, and downregulating PIPK1, PIPK3 and MLKL level, thereby alleviating the inflammation in AP.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2020 ◽  
pp. 229255032096740
Author(s):  
Qin Yonghong ◽  
Li Aishu ◽  
Yazan Al-Ajam ◽  
Liao Yuting ◽  
Zhang Xuanfeng ◽  
...  

Current wound healing models generally employ full-thickness or irregular split wounds. Consequently, assessing the type of healing at varying wound depths and determining the deepest level at which wounds can regenerate has been a challenge. We describe a wound model that allows assessment of the healing process over a continuous gradient of wound depth, from epidermal to full-thickness dermal loss. Further, we investigate whether green fluorescent protein–labeled bone marrow mesenchymal stem cells (BM-MSCs/GFP) transplantation could regenerate deeper wounds that might otherwise lead to scar formation. A wound gradient was created on the back of 120 Sprague Dawley rats, which were randomized into the BM-MSCs/GFP and control group. These were further subdivided into 6 groups where terminal biopsies of the healing wounds were taken at days 1, 3, 5, 7, 14, and 21 post-operatively. At each observed time point, the experimental animals were anesthetized and photographed, and depending on the group, the animals euthanized and skin taken for rapid freezing, haemotoxylin and eosin staining, and vascular endothelial growth factor (VEGF) immunohistochemistry. We found the deepest layer to regenerate in the control group was at the level of the infundibulum apex, while in the BM-MSCs/GFP group this was deeper, at the opening site of sebaceous duct at hair follicle in which had the appearance of normal skin and less wound contraction than the control group ( P value less than .05). The expression of VEGF in BM-MSCs/GFP group was higher than that in control group ( P value less than .05). The number of vessels increased from 2.5 ± 0.2/phf of control group to 5.0 ± 0.3/phf of BM-MSCs/GFP ( P value less than .05). The progressively deepening wound model we described can identify the type of wound repair at increasing depths. Further, topical transplantation of BM-MSCs/GFP significantly improved regeneration of deeper wounds from infundibulum apex (maximum depth of control group regeneration) to the opening site of sebaceous duct at hair follicle level.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Zhao ◽  
Zhiying He ◽  
Dandan Huang ◽  
Jun Gao ◽  
Yanfang Gong ◽  
...  

Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation.Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was also analyzed.Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05).Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuan Tian ◽  
Jie He ◽  
Yuanyuan An ◽  
Zailing Yang ◽  
Donghai Yan ◽  
...  

Abstract Background Female sex hormone secretion and reproductive ability decrease with ageing. Bone marrow mesenchymal stem cells (BMMSCs) have been postulated to play a key role in treating ovarian ageing. Methods We used macaque ovarian ageing models to observe the structural and functional changes after juvenile BMMSC treatment. Moreover, RNA-seq was used to analyse the ovarian transcriptional expression profile and key pathways through which BMMSCs reverse ovarian ageing. Results In the elderly macaque models, the ovaries were atrophied, the regulation ability of sex hormones was reduced, the ovarian structure was destroyed, and only local atretic follicles were observed, in contrast with young rhesus monkeys. Intravenous infusion of BMMSCs in elderly macaques increased ovarian volume, strengthened the regulation ability of sex hormones, reduced the degree of pulmonary fibrosis, inhibited apoptosis, increased density of blood vessels, and promoted follicular regeneration. In addition, the ovarian expression characteristics of ageing-related genes of the elderly treatment group reverted to that of the young control group, 1258 genes that were differentially expressed, among which 415 genes upregulated with age were downregulated, 843 genes downregulated with age were upregulated after BMMSC treatment, and the top 20 differentially expressed genes (DEGs) in the protein-protein interaction (PPI) network were significantly enriched in oocyte meiosis and progesterone-mediated oocyte maturation pathways. Conclusion The BMMSCs derived from juvenile macaques can reverse ovarian ageing in elderly macaques.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Ying Chen ◽  
Yu-Run Yang ◽  
Xiao-Liang Fan ◽  
Peng Lin ◽  
Huan Yang ◽  
...  

AbstractOsteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2631-2635 ◽  
Author(s):  
Bruno Delorme ◽  
Jochen Ringe ◽  
Nathalie Gallay ◽  
Yves Le Vern ◽  
Dominique Kerboeuf ◽  
...  

We have studied the plasma membrane protein phenotype of human culture-amplified and native bone marrow mesenchymal stem cells (BM MSCs). We have found, using microarrays and flow cytometry, that cultured cells express specifically 113 transcripts and 17 proteins that were not detected in hematopoietic cells. These antigens define a lineage-homogenous cell population of mesenchymal cells, clearly distinct from the hematopoietic lineages, and distinguishable from other cultured skeletal mesenchymal cells (periosteal cells and synovial fibroblasts). Among the specific membrane proteins present on cultured MSCs, 9 allowed the isolation from BM mononuclear cells of a minute population of native MSCs. The enrichment in colony-forming units–fibroblasts was low for CD49b, CD90, and CD105, but high for CD73, CD130, CD146, CD200, and integrin alphaV/beta5. In addition, the expression of CD73, CD146, and CD200 was down-regulated in differentiated cells. The new marker CD200, because of its specificity and immunomodulatory properties, deserves further in-depth studies.


Sign in / Sign up

Export Citation Format

Share Document