scholarly journals Exhaust Emissions and Physicochemical Properties of n-Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3413 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Vlasios Karathanassis ◽  
Dimitrios Karonis

Currently, n-butanol is a promising oxygenate (potentially of renewable origin) to be used in blends with conventional diesel fuel in compression ignition engines. However, its poor ignition quality can drastically deteriorate the cetane number (CN) of the blend. In the present work, the effects of adding n-butanol to ultra-low-sulfur diesel (ULSD) were assessed, aiming at simultaneously eliminating its negative effect on the blend’s ignition quality. Concentrations of 10% and 20% (v/v) n-butanol in ULSD fuel were studied. As cetane-improving agents, a widely used cetane improver (2-ethylhexyl nitrate—EHN) and a high-CN, bio-derived paraffinic diesel (hydrotreated used cooking oil—HUCO) were used. The initial investigation of ignition quality improvement with the addition of either EHN or HUCO produced four “ignition quality response curves” that served as mixing guides in order to create four blends of identical ignition quality as the baseline ULSD fuel. These four blends (10% and 20% v/v n-butanol in ULSD fuel, with the addition of either EHN or HUCO, at the cost of ULSD volume share only) were evaluated comparatively to the baseline ULSD fuel and a 10% (v/v) n-butanol/90% ULSD blend with regards to their physicochemical properties and the effect on the operation and exhaust emissions of a stationary diesel engine.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Dimitrios Karonis

Hydroprocessing of liquid biomass is a promising technology for the production of “second generation” renewable fuels to be used in transportation. Its products, normal paraffins, can be further hydrotreated for isomerization in order to improve their cold flow properties. The final product, usually referred to as “paraffinic diesel,” is a high cetane number, clean burning biofuel which is rapidly gaining popularity among researchers and the industry. Nevertheless, the costly isomerization step can be omitted if normal paraffins are to be directly mixed with conventional diesel in low concentrations. In this work, nonisomerized paraffinic diesel produced through hydrotreating of used cooking oil (hydrotreated used cooking oil (HUCO)) has been used in 4 blends (up to 40% v/v) with conventional diesel fuel. The blends’ properties have been assessed comparatively to European EN 590 and EN 15940 standards (concerning conventional automotive diesel fuels and paraffinic diesel fuels from synthesis or hydrotreatment, resp.). Furthermore, the HUCO blends have been used in a standard stationary diesel engine-generator set. The blends have been considered as “drop-in replacements” for standard diesel fuel. As such, no engine modifications took place whatsoever. The engine performance and exhaust emissions of steady-state operation have been examined in comparison with engine operation with the baseline conventional diesel fuel.


Konversi ◽  
2016 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Bagas A. Jatyaraga ◽  
Leonardo K. Atmadja ◽  
Dwi A. Anggorowati ◽  
Harimbi Setyawati

Abstrak-Proses pemurnian biodiesel menggunakan metode pencucian kering telah berhasil dilakukan. Biodiesel yang digunakan berasal dari minyak jelantah. Secara keseluruhan biodiesel yang dimurnikan dengan metode pencucian kering mengalami peningkatan kualitas. Waktu reaksi dan jumlah magnesol yang digunakan sangat mempengaruhi proses pemurnian biodiesel. Kondisi terbaik didapatkan pada waktu reaksi 60 menit dan jumlah magnesol 2 %w/w. Densitas, viskositas,titik nyala, angka setana, gliserol bebas dan gliserol total mengalami peningkatan kualitas masing-masing sebesar 3%, 34%, 7%, 22%, 48% dan 38%. Kata Kunci: biodiesel, pencucian kering, magnesol Abstract-Biodiesel purification process using a dry cleaning method has been successfully performed. Biodiesel is derived from used cooking oil. Overall purified biodiesel dry washing method to increase the quality. Reaction time and amount used magnesol greatly affect biodiesel purification process. The best conditions obtained at reaction time of 60 minutes and the amount of magnesol 2% w / w. Density, viscosity, flash point, cetane number, free glycerol and total glycerol increased the quality are  3%, 34%, 7%, 22%, 48% and 38%, respectively. Keyword: biodiesel, dry cleaning, magnesol


2016 ◽  
Vol 3 (1) ◽  
pp. 38-47
Author(s):  
Sukma Budi Ariyani ◽  
Asmawit ◽  
Hidayati

The purpose of this study was to know the effect of adding a catalyst ash of palm empty fruit bunches on the number and characteristics of biodiesel produced from used cooking oil. The independent variables studied are heavy ash of palm empty fruit bunches (8, 10 and 12 g), the mole ratio of methanol: oil (6: 1, 9: 1 and 12: 1) and reaction time (60, 90 and 120 minutes). The results obtained are highest biodiesel yield is obtained of 54.7 mg/Kg on a reaction time of 60 minutes, the mole ratio of methanol:oil at 12:1, catalyst ash 10 g per 75 mL of methanol at a temperature of 60oC and stirring speed 600 rpm. Characteristics of biodiesel were analyzed in the study include the density, kinematic viscosity, cetane number, flash point, the point of fog, carbon residue, distillation temperature 90% vol, phosphorus, acid number and calorific value.


Author(s):  
Ziliang Zheng ◽  
Tamer Badawy ◽  
Naeim Henein ◽  
Eric Sattler

This paper investigates the physical and chemical ignition delay (ID) periods in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT was used to determine the derived cetane number (DCN) according to ASTM D6890-10a standards. The fuels tested were ultra low sulfur diesel (ULSD), jet propellant-8 (JP-8), and two synthetic fuels of Sasol IPK and F-T SPK (S-8). A comparison was made between the DCN and cetane number (CN) determined according to ASTM-D613 standards. Tests were conducted under steady state conditions at a constant pressure of 21 bars and various air temperatures ranging from 778 K to 848 K. The rate of heat release (RHR) was calculated from the measured pressure trace, and a detailed analysis of the RHR trace was made particularly for the auto-ignition process. Tests were conducted to determine the physical and chemical delay periods by comparing results obtained from two tests. In the first test, the fuel was injected into air according to ASTM standards. In the second test, the fuel was injected into nitrogen. The point at which the two resultant pressure traces separated was considered to be the end of the physical delay period. The effects of the charge temperature on the total ID as defined in ASTM D6890-10a standards, as well as on the physical and chemical delays, were determined. It was noticed that the physical delay represented a significant part of the total ID over all the air temperatures covered in this investigation. Arrhenius plots were developed to determine the apparent activation energy for each fuel using different IDs. The first was based on the total ID measured according to ASTM standards. The second was the chemical delay determined in this investigation. The activation energy calculated from the total ID showed higher values for lower CN fuels except Sasol IPK. The activation energy calculated from the chemical delay period showed consistency in the increase of the activation energy with the drop in CN including Sasol IPK. The difference between the two findings could be explained by examining the sensitivity of the physical delay period of different fuels to the change in air temperature.


2014 ◽  
Author(s):  
Δέσποινα Χείλαρη

Το αντικείμενο της διδακτορικής διατριβής περιλαμβάνει τρείς ενότητες. Καταρχήν, την διερεύνηση της επίδρασης των βιοκαυσίμων στις ιδιότητες των βενζινών. Τα βιοσυστατικά που χρησιμοποιήθηκαν ήταν η αιθανόλη (EtOH) και ο αιθυλο-τριτοταγής-βουτυλαιθέρας (ETBE) σε εμπορικές βενζίνες. Τα καύσιμα βάσης που παρασκευάστηκαν είχαν αριθμούς οκτανίου μικρότερους από το κατώτερο όριο της προδιαγραφής του Ευρωπαϊκού Προτύπου EN 228:2012. Στόχος ήταν η βελτίωση των αριθμών οκτανίου των καυσίμων με τα οξυγονούχα πρόσθετα.Η EtOH και ο ETBE συμβάλλουν στην αύξηση των δυο αριθμών οκτανίου (RON, MON) των βενζινών. Η EtOH περισσότερο στον αριθμό RON και ο ETBE στον MON. Τα βιοσυστατικά έχουν υψηλή ευαισθησία και αυξάνουν την ευαισθησία των βενζινών. Η προσθήκη της αιθανόλης αυξάνει την πτητικότητα των βενζινών. Η τάση ατμών αυξάνει μέχρι την 4% V/V προσθήκη αιθανόλης στις βενζίνες και μετά σταθεροποιείται. Από την άλλη μεριά η προσθήκη ETBE μειώνει την τάση ατμών και βοηθάει στο να ανασταλεί η δυσμενής επίπτωση της προσθήκης αιθανόλης. Η προσθήκη της αιθανόλης επηρεάζει αρνητικά τη μετωπική πτητικότητα των βενζινών, το κλάσμα E70 και κατακρατά νερό. Η προσθήκη ETBE επηρεάζει ελαφρά τη μέση πτητικότητα των βενζινών και το κλάσμα E100. Η προσθήκη ETBE βοηθάει στη διατήρηση των μιγμάτων βενζίνης – EtOH – ETBE εντός των ορίων που θέτει το πρότυπο EN 228:2012.Στην επόμενη ενότητα εξετάστηκε η υδρογονοεπεξεργασία τηγανέλαιων (UCOs) δίνοντας υγρό οργανικό προϊόν (Hydroprocessed Used Cooking Oil - HUCO). Η διεργασία προσαρμόστηκε ώστε να μετατρέπει αποτελεσματικά το απόβλητο τηγανέλαιο σε πολύ χρήσιμο υποκατάστατο του ντήζελ. Η καινοτομία βρίσκεται στη 100% χρήση καθαρού τηγανελαίου. Το υδρογόνο που χρησιμοποιήθηκε ήταν 100% ανανεώσιμο. Το HUCO είχε εύρος απόσταξης στην περιοχή απόσταξης του ντήζελ (180-360°C), με άσχημες τιμές ψυχρών ιδιοτήτων. Παρασκευάστηκαν μίγματα HUCO με ντήζελ (ULSD) και μίγματα HUCO με ‘κατώτερης ποιότητας’ μεσαία αποστάγματα π.χ Light Cycle Oil (LCO) και Low Cetane Number Gasoil (LCN), ώστε να βελτιωθούν οι ιδιότητες ψυχρής ροής του HUCO kai να συγχρόνως να χρησιμοποιηθούν τα ‘κατώτερα’ πετρελαϊκά κλάσματα. Η προσθήκη 20%V/V HUCO σε ντήζελ και 30% V/V HUCO στο LCN οδήγησε σε αποδεκτό καύσιμο θερινών προδιαγραφών, όχι όμως τα μίγματα HUCO - LCO. Τριαδικά μίγματα HUCO - LCO – LCN προτάθηκαν ώστε να χρησιμοποιηθεί λιγότερο HUCO μιας και η διαθεσιμότητά του είναι περιορισμένη στον Ελλαδικό Χώρο. Επίσης χρησιμοποιήθηκε μέχρι 15%V/V LCO. Τα καύσιμα που προέκυψαν ήταν θερινών προδιαγραφών. Ακολούθως, δοκιμάστηκε η συν-επεξεργασία βαρέος gasoil (HGO) με UCOs ώστε να ενσωματωθούν τα UCOs στο διυλιστήριο δίνοντας αποδεκτό καύσιμο θερινών προδιαγραφών.Επιπλέον εξετάστηκε η παραγωγή βιοκαυσίμων με μετεστεροποίηση φυτικών ελαίων με χρήση αιθανόλης. Πραγματοποιήθηκε παραγωγή αιθυλεστέρων λιπαρών οξέων (Fatty Acid Ethyl Esters - FAEE) με μονό και διπλό στάδιο μετεστεροποίησης. Με τις δυο τεχνολογίες οι FAEE από εξευγενισμένο ηλιέλαιο έδωσαν στη βέλτιστη αναλογία αιθανόλης τη μεγαλύτερη περιεκτικότητα σε εστέρες συγκριτικά με τους FAEE από σογιέλαιο με μεγαλύτερη όμως ανάκτηση σε προϊόν. Ο χρόνος αντίδρασης για το διπλό στάδιο μετεστεροποίησης ήταν μικρότερος από το μόνο, με μικρότερες συγκεντρώσεις αιθανόλης. Ο υγρός εξευγενισμός με εκπλύσεις με νερό έδωσε μεγαλύτερη περιεκτικότητα σε εστέρες και περισσότερο προϊόν. Η παραγωγή των FAEE είναι υπό διερεύνηση αφού δεν ακολουθεί πλήρως το EN 14214:2012, έχοντας μειωμένη ανάκτηση σε προϊόν.


2010 ◽  
Vol 40 (3) ◽  
pp. 749-762
Author(s):  
Hirokazu GOTO ◽  
Yuichi HATAYA ◽  
Yasuyuki YOKOTA ◽  
Takeshi MIZUNOYA ◽  
Yoshiro HIGANO

2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Sign in / Sign up

Export Citation Format

Share Document