scholarly journals Influence of Incorporating Silver Nanoparticles in Protease Treatment on Fiber Friction, Antistatic, and Antibacterial Properties of Wool Fibers

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hafeezullah Memon ◽  
Hua Wang ◽  
Sohail Yasin ◽  
Adeel Halepoto

This study was conducted by analyzing the effect of surface treatment on wool using varying percentages of protease (3%, 6%, and 9%) with incorporating silver nanoparticles and by varying pH (i.e., pH = 4 and pH = 7). The comparison of fiber surface morphology and the FTIR analysis was done to characterize the nanocoating. The results showed that the antistatic and antibacterial effect on the samples treated at 3% protease and 6% protease were better than the samples treated at 9% protease. Correspondingly, the samples treated at pH 4 had better antistatic and antibacterial properties than those treated at pH 7. Sulfur compounds play a key role in interaction and absorption of silver nanoparticles.

2020 ◽  
Author(s):  
Sara González-Fernández ◽  
Víctor Lozano-Iturbe ◽  
Beatriz García ◽  
Luis J. Andrés ◽  
Mª Fe Menéndez ◽  
...  

Abstract Background: The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology. Results: When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions. Conclusions: AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2605 ◽  
Author(s):  
A. Rozilah ◽  
C. N. Aiza Jaafar ◽  
S. M. Sapuan ◽  
I. Zainol ◽  
R. A. Ilyas

Antibacterial sugar palm starch biopolymer composite films were developed and derived from renewable sources and inorganic silver nanoparticles (AgNPs) as main ingredients for antibacterial coatings. The composite films were produced by solution casting method and the mechanical and physicochemical properties were determined by tensile test, Fourier Transform Infrared (FTIR) analysis, thermal gravimetric analysis (TGA), antibacterial screening test and field emission scanning electron microscopy (FESEM) images. It was found that mechanical and antibacterial properties of biocomposite films were improved after the addition of AgNPs compared with the film without active metals. The weakness of neat biocomposite films was improved by incorporating inorganic AgNPs as a nanofiller in the films’ matrix to avoid bacterial growth. The results showed that the tensile strength ranged between 8 kPa and 408 kPa and the elasticity modulus was between 5.72 kPa and 9.86 kPa. The addition of AgNPs in FTIR analysis decreased the transmittance value, caused small changes in the chemical structure, caused small differences in the intensity peaks, and produced longer wavelengths. These active films increased the degradation weight and decomposition temperature due to the more heat-stable AgNPs. Meanwhile, the average inhibited areas measured were between 7.66 and 7.83 mm (Escherichia coli), 7.5 and 8.0 mm (Salmonella cholerasuis), and 0.1 and 0.5 mm for Staphylococcus aureus. From the microscopic analysis, it was observed that the average size of all microbes for 1 wt% and 4 wt% AgNPs ranged from 0.57 to 2.90 mm. Overall, 3 wt% AgNP nanofiller was found to be the best composition that fulfilled all the mechanical properties and had better antimicrobial properties. Thus, the development of an organic-inorganic hybrid of antibacterial biopolymer composite films is suitable for antibacterial coatings.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1529
Author(s):  
Yu-Hsuan Chen ◽  
Wei-Hsun Wang ◽  
Sheng-Hui Lin ◽  
Yuan-Ting Yang-Wang ◽  
Sung-Pin Tseng ◽  
...  

Acinetobacter baumannii (A. baumannii) is a common and challenging pathogen of nosocomial infections, due to its ability to survive on inanimate objects, desiccation tolerance, and resistance to disinfectants. In this study, we investigated an antibacterial strategy to combat A. baumannii via the combination of antibiotics and silver protein. This strategy used a functional platform consisting of silver nanoparticles (AgNPs) resurrected from silver-based calcium thiophosphate (SSCP) through casein and arginine. Then, the silver protein was combined with tigecycline, the first drug in glycylcycline antibiotic, to synergistically inhibit the viability of A. baumannii. The synergistic antibacterial activity was confirmed by the 96-well checkerboard method to determine their minimum inhibitory concentrations (MIC) and calculated for the combination index (CI). The MIC of the combination of silver protein and tigecycline (0.31 mg/mL, 0.16 µg/mL) was significantly lower than that of the individual MIC, and the CI was 0.59, which indicates a synergistic effect. Consequently, we integrated the detailed synergistic antibacterial properties when silver protein was combined with tigecycline. The result could make for a promising approach for the treatment of A. baumannii.


2019 ◽  
Vol 10 (3) ◽  
pp. 5592-5598

A new green deposition of silver nanoparticles (AgNPs) on polymers was proposed in this work. In-situ synthesis of AgNPs on polymers was achieved via a green procedure using natural reducing agents, which are Ageratum conyzoidez and Mikania micrantha. Several characterizations of the treated polymers such as color transformation, surface morphology, elemental contents, and water absorption were comprehensively evaluated. For the application, the treated polymers were then tested against waterborne bacteria, which are Escherichia coli and Bacillus cereus. Rapid deposition of AgNPs via the presently biological method can be successfully achieved as observed via surface morphology analysis and energy dispersive X-ray investigation. Water absorption capabilities of the polymers can be decreased after attaching with AgNPs, which can also probably contribute to the enhancement of their antibacterial activities. This study observed that the treated polymers showed excellent antibacterial activities against Escherichia coli and Bacillus cereus. The findings of this study are useful in designing water purifiers to disinfect contaminated water.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3838
Author(s):  
Hazem Idriss ◽  
Roman Elashnikov ◽  
Silvie Rimpelová ◽  
Barbora Vokatá ◽  
Petr Haušild ◽  
...  

The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Varvara Platania ◽  
Alexandra Kaldeli-Kerou ◽  
Theodora Karamanidou ◽  
Maria Kouki ◽  
Alexander Tsouknidas ◽  
...  

A lot of effort has been dedicated recently to provide a better insight into the mechanism of the antibacterial activity of silver nanoparticles (AgNPs) colloidal suspensions and their released silver ionic counterparts. However, there is no consistency regarding whether the antibacterial effect displayed at cellular level originates from the AgNPs or their ionic constitutes. To address this issue, three colloidal suspensions exhibiting different ratios of AgNPs/silver ions were synthesized by a wet chemistry method in conjunction with tangential flow filtration, and were characterized and evaluated for their antimicrobial properties against two gram-negative, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two gram-positive, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), bacterial strains. The produced samples contained 25% AgNPs and 75% Ag ions (AgNP_25), 50% AgNPs and 50% Ag ions (AgNP_50), and 100% AgNPs (AgNP_100). The sample AgNP_100 demonstrated the lowest minimum inhibitory concentration values ranging from 4.6 to 15.6 ppm for all four bacterial strains, while all three samples indicated minimum bactericidal concentration (MBC) values ranging from 16.6 ppm to 62.5 ppm against all strains. An increase in silver ions content results in higher bactericidal activity. All three samples were found to lead to a significant morphological damage by disruption of the bacterial cell membranes as analyzed by means of scanning electron microscopy (SEM). The growth kinetics demonstrated that all three samples were able to reduce the bacterial population at a concentration of 3.1 ppm. SEM and growth kinetic data underline that S. epidermidis is the most sensitive among all strains against the investigated samples. Our results showed that all three AgNPs colloidal suspensions exhibited strong antibacterial properties and, thus, they can be applied in medical devices and antimicrobial control systems.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5878
Author(s):  
Yage Xing ◽  
Xingmei Liao ◽  
Xiaocui Liu ◽  
Wenxiu Li ◽  
Ruihan Huang ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.


Author(s):  
R. I. Dovnar ◽  
A. Yu. Vasil’kov ◽  
T. M. Sakalova ◽  
A. V. Naumkin ◽  
A. V. Budnikov ◽  
...  

A quantitative assessment of the antibacterial effect of silver nanoparticles on polyantibiotic-resistant grampositive and gram-negative microorganisms was carried out. Silver nanoparticles were synthesized by the environmentally friendly metal-steam synthesis method. The size and electronic state of nanoparticles were investigated by transmission electron and X-ray photoelectron spectroscopy. The antibacterial properties of nanomaterials were assessed on two clinical pathogenic strains of gram-positive and four strains of gram-negative microorganisms. The typing and assessment of bacterial resistance to antibiotics were carried out on a microbiological analyzer. The antibacterial effect of nanoparticles was quantitatively assessed using the dilution method and the determination of the minimum inhibitory and minimum bactericidal concentrations.It was found that the studied silver nanoparticles have sizes in the range from 5 to 24 nm with an average diameter of 10.8 nm. It was shown that all clinical strains of microorganisms used in the study are characterized by multiple antibacterial resistance; the percentage of their antibiotic resistance ranges from 12.5 to 93.3 %. It was found that for the studied microorganism, the values of the minimum inhibitory concentration (MIC) are in the range from 7.81 to 31.25 μg/ml, and the minimum bactericidal concentration (MBC) is in the range from 31.25 to 62.50 μg/ml. The obtained MIC and MBC data can be used to create promising antimicrobial drugs and medical next generation devices.


2020 ◽  
Author(s):  
Sara González-Fernández ◽  
Víctor Lozano-Iturbe ◽  
Beatriz García ◽  
Luis J. Andrés ◽  
Mª Fe Menéndez ◽  
...  

Abstract Background: The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology. Results: When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions. Conclusions: AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.


2020 ◽  
Author(s):  
Sara González-Fernández ◽  
Víctor Lozano-Iturbe ◽  
Beatriz García ◽  
Luis J. Andrés ◽  
Mª Fe Menéndez ◽  
...  

Abstract Background: The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology.Results: When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions.Conclusions: AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.


Sign in / Sign up

Export Citation Format

Share Document