scholarly journals Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mateusz Maciejczyk ◽  
Ewa Żebrowska ◽  
Anna Zalewska ◽  
Adrian Chabowski

Oxidative stress is a key pathogenic factor in both neurogenerative and metabolic diseases. However, its contribution in the brain complications of insulin resistance is still not well understood. Therefore, the aim of this study was the evaluation of redox homeostasis and oxidative damage in the hypothalamus and cerebral cortex of insulin-resistant and control rats. 16 male Wistar rats were divided into two equal groups (n=8): the control and high fat diet group (HFD). Prooxidant enzymes (xanthine oxidase and NADPH oxidase); enzymatic and nonenzymatic antioxidants [glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase-1 (SOD-1), and uric acid (UA)]; and oxidative damage products [advanced glycation end products (AGE), 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG)] as well as the total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and total ferric reducing ability of sample (FRAP) were evaluated in the hypothalamus and cerebral cortex as well as serum/plasma of HFD-fed and control rats. The activity of prooxidant enzymes was significantly increased in the cerebral cortex and hypothalamus of HFD-fed rats vs. control rats. Additionally, we have showed enhanced antioxidant efficiency in the hypothalamus (↑CAT, ↑UA, ↑TAC, and ↑FRAP) and cerebral cortex (↑GPx, ↑CAT, ↑SOD-1, ↑UA, ↑TAC, and ↑FRAP) of HFD-fed rats. All of the oxidative damage markers (AGE, 4-HNE, MDA, 8-OHdG, and OSI) were significantly increased in the cerebral cortex of insulin-resistant rats, while only 4-HNE and MDA were markedly higher in the hypothalamus of the HFD group. Summarizing, the results of our study indicate an adaptive brain response to the increased production of free radicals under insulin resistance conditions. Despite the increase in antioxidative defense systems, this mechanism does not protect both brain structures from oxidative damages. However, the cerebral cortex is more susceptible to oxidative stress caused by HFD.

2010 ◽  
Vol 299 (4) ◽  
pp. R1082-R1090 ◽  
Author(s):  
Jill K. Morris ◽  
Gregory L. Bomhoff ◽  
John A. Stanford ◽  
Paige C. Geiger

Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-fat diet for 5 wk before infusing 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Our goal was to determine whether a high-fat diet and the resulting peripheral insulin resistance would exacerbate 6-OHDA-induced nigrostriatal DA depletion. Prior to 6-OHDA infusion, animals on the high-fat diet exhibited greater body weight, increased adiposity, and impaired glucose tolerance. Two weeks after 6-OHDA, locomotor activity was tested, and brain and muscle tissue was harvested. Locomotor activity did not differ between the groups nor did cholesterol levels or measures of muscle atrophy. High-fat-fed animals exhibited higher homeostatic model assessment of insulin resistance (HOMA-IR) values and attenuated insulin-stimulated glucose uptake in fast-twitch muscle, indicating decreased insulin sensitivity. Animals in the high-fat group also exhibited greater DA depletion in the substantia nigra and the striatum, which correlated with HOMA-IR and adiposity. Decreased phosphorylation of HSP27 and degradation of IκBα in the substantia nigra indicate increased tissue oxidative stress. These findings support the hypothesis that a diet high in fat and the resulting insulin resistance may lower the threshold for developing PD, at least following DA-specific toxin exposure.


2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


2020 ◽  
Author(s):  
Xiaoling Wu ◽  
Xinyu Zou ◽  
Mi Zhang ◽  
Haiqiang Hu ◽  
Xueliang Wei ◽  
...  

Abstract Background: Osteocalcin (OCN), as an energy-regulating hormone, involves in preventing nonalcoholic steatohepatitis. Laying hens have been used as an animal model for investigating liver function and related metabolic disordersas that the synthesis of fat in laying hens is much faster than in mammals with limited adipose tissue. The aim of this study was to investigate the effects of OCN on fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Methods: Thirty 68-week-old White Plymouth laying hens were randomly assigned into conventional single-bird cages, and the cages were randomly allocated into one of three treatments: normal diet (ND + vehicle , ND+V), high-fat diet (HFD + vehicle, HFD+V), and HFD + OCN (3 μg/bird, 1 time/2 days, i.m.) for 40 days. At experimental day 30, oral glucose tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed. At the end of experiment, the hens were euthanized followed blood collection. The plasma aspartate transaminase (AST), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automatic biochemistry analyzer. Pathological changes in the liver were examined under both light and transmission electron microscopes. The plasma inflammatory factors including interleukin-1 (IL-1), IL-6, and tumor Necrosis Factor-alpha (TNF-α) were analyzed by ELISA, and the gene expressions of these inflammatory factors in the liver were analyzed by Real-time PCR. And oxidative stress was evaluated using Malondialdehyde (MDA) and Glutathione peroxidase (GSH-Px) assay kits. Results: The results showed HFD hens had more severe liver haemorrhage and fibrosis than ND hens. The ultra-microstructural examination showed that hepatocytes of HFD hens appeared necrotic pyknosis associated with great intracellular electron, mitochondrial swelling, shrunk nucleus and absence of autolysosomes. OCN mitigated these pathological changes by improved HFD hens’ insulin resistance via alleviating the glucose intolerence and improving insulin sensitivity; inhibited HFD-induced oxidative stress as evidenced by decreased liver concentrations of MDA but increased GSH-Px; and reduced the inflammatory reaction with reducing blood IL-6 and TNF-α concentrations and mRNA expressions. Conclusion: These results suggest a high-fat diet promotes the FLHS development in aged hens, while OCN prevents the FLHS process through inhibiting insulin resistance, inflammatory reaction, oxidative stress and fibrosis, and acting autophagy.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Cuauhtémoc Sandoval-Salazar ◽  
Cecilia Oviedo-Solís ◽  
Edmundo Lozoya-Gloria ◽  
Herlinda Aguilar-Zavala ◽  
Martha Solís-Ortiz ◽  
...  

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 249
Author(s):  
Jong Ryeal Hahm ◽  
Myeung Hoon Jo ◽  
Rahat Ullah ◽  
Min Woo Kim ◽  
Myeong Ok Kim

Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.


2019 ◽  
Vol 317 (6) ◽  
pp. E973-E983 ◽  
Author(s):  
Annie Hasib ◽  
Chandani K. Hennayake ◽  
Deanna P. Bracy ◽  
Aimée R. Bugler-Lamb ◽  
Louise Lantier ◽  
...  

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient ( cd44−/−) mice and wild-type littermates ( cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44−/− mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44−/− mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44−/− mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44−/− compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44−/− mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44−/− mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


2019 ◽  
Vol 317 (6) ◽  
pp. C1172-C1182 ◽  
Author(s):  
Min-Gyeong Shin ◽  
Hye-Na Cha ◽  
Soyoung Park ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
...  

Selenoprotein W (SelW) is a selenium-containing protein with a redox motif found abundantly in the skeletal muscle of rodents. Previous in vitro studies suggest that SelW plays an antioxidant role; however, relatively few in vivo studies have addressed the antioxidant role of SelW. Since oxidative stress is a causative factor for the development of insulin resistance in obese subjects, we hypothesized that if SelW plays a role as an antioxidant, SelW deficiency could aggravate the oxidative stress and insulin resistance caused by a high-fat diet. SelW deficiency did not affect insulin sensitivity and H2O2 levels in the skeletal muscle of control diet-fed mice. SelW levels in the skeletal muscle were decreased by high-fat diet feeding for 12 wk. High-fat diet induced obesity and insulin resistance and increased the levels of H2O2 and oxidative stress makers, which were not affected by SelW deficiency. High-fat diet feeding increased the expression of antioxidant enzymes; however, SelW deficiency did not affect the expression levels of antioxidants. These results suggest that SelW does not play a protective role against oxidative stress and insulin resistance in the skeletal muscle of high-fat diet-fed obese mice.


2018 ◽  
Vol 237 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Keerati Wanchai ◽  
Sakawdaurn Yasom ◽  
Wannipa Tunapong ◽  
Titikorn Chunchai ◽  
Parameth Thiennimitr ◽  
...  

Obesity is health issue worldwide, which can lead to kidney dysfunction. Prebiotics are non-digestible foods that have beneficial effects on health. This study aimed to investigate the effects of xylooligosaccharide (XOS) on renal function, renal organic anion transporter 3 (Oat3) and the mechanisms involved. High-fat diet was provided for 12 weeks in male Wistar rats. After that, the rats were divided into normal diet (ND); normal diet treated with XOS (NDX); high-fat diet (HF) and high-fat diet treated with XOS (HFX). XOS was given daily at a dose of 1000 mg for 12 weeks. At week 24, HF rats showed a significant increase in obesity and insulin resistance associated with podocyte injury, increased microalbuminuria, decreased creatinine clearance and impaired Oat3 function. These alterations were improved by XOS supplementation. Renal MDA level and the expression of AT1R, NOX4, p67phox, 4-HNE, phosphorylated PKCα and ERK1/2 were significantly decreased after XOS treatment. In addition, Nrf2-Keap1 pathway, SOD2 and GCLC expression as well as renal apoptosis were also significantly reduced by XOS. These data suggest that XOS could indirectly restore renal function and Oat3 function via the reduction of oxidative stress and apoptosis through the modulating of AT1R-PKCα-NOXs activation in obese insulin-resistant rats. These attenuations were instigated by the improvement of obesity, hyperlipidemia and insulin resistance.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 635
Author(s):  
Yanwen Wang ◽  
Sandhya Nair ◽  
Jacques Gagnon

Although genetic predisposition influences the onset and progression of insulin resistance and diabetes, dietary nutrients are critical. In general, protein is beneficial relative to carbohydrate and fat but dependent on protein source. Our recent study demonstrated that 70% replacement of dietary casein protein with the equivalent quantity of protein derived from herring milt protein hydrolysate (HMPH; herring milt with proteins being enzymatically hydrolyzed) significantly improved insulin resistance and glucose homeostasis in high-fat diet-induced obese mice. As production of protein hydrolysate increases the cost of the product, it is important to determine whether a simply dried and ground herring milt product possesses similar benefits. Therefore, the current study was conducted to investigate the effect of herring milt dry powder (HMDP) on glucose control and the associated metabolic phenotypes and further to compare its efficacy with HMPH. Male C57BL/6J mice on a high-fat diet for 7 weeks were randomized based on body weight and blood glucose into three groups. One group continued on the high-fat diet and was used as the insulin-resistant/diabetic control and the other two groups were given the high-fat diet modified to have 70% of casein protein being replaced with the same amount of protein from HMDP or HMPH. A group of mice on a low-fat diet all the time was used as the normal control. The results demonstrated that mice on the high-fat diet increased weight gain and showed higher blood concentrations of glucose, insulin, and leptin, as well as impaired glucose tolerance and pancreatic β-cell function relative to those on the normal control diet. In comparison with the high-fat diet, the replacement of 70% dietary casein protein with the same amount of HMDP or HMPH protein decreased weight gain and significantly improved the aforementioned biomarkers, insulin sensitivity or resistance, and β-cell function. The HMDP and HMPH showed similar effects on every parameter except blood lipids where HMDP decreased total cholesterol and non-HDL-cholesterol levels while the effect of HMPH was not significant. The results demonstrate that substituting 70% of dietary casein protein with the equivalent amount of HMDP or HMPH protein protects against obesity and diabetes, and HMDP is also beneficial to cholesterol homeostasis.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1699-1699
Author(s):  
Yanwen Wang ◽  
Sandhya Nair ◽  
Jacques Gagnon

Abstract Objectives The present study was designed to examine the effect of herring milt dry powder (HMDP) on glucose homeostasis and related metabolic phenotypes and compare its efficacy with herring milt protein hydrolysate (HMPH) in diet-induced obese and insulin resistant mice. Methods Male C57BL/6 J mice were pretreated with a high-fat diet for 7 weeks were divided into 3 groups where one group continued on the high-fat diet and used as the obese and insulin resistant control (HFC) and the other two groups were fed a modified HFC diet where 70% of casein was replaced with an equal percentage of protein derived from HMDP or HMPH. A group of mice fed a low-fat diet all the time was used as the normal or low-fat control (LFC). Body weight was obtained weekly and food intake was recorded daily. Semi-fating (4–6 hr) blood glucose was measured every other week using a glucometer using the blood from tail vein. Oral glucose tolerance was measured twice during weeks 5 and 9, respectively, and insulin tolerance was determined during week 7 of the treatment. At the end of the experiment, serum was obtained following overnight fasting for the measurement of fasting insulin, leptin, free fatty acids and lipids as well as other glucose metabolism-related biomarkers. Results During the 9-week treatment period, mice on the high-fat diet maintained significantly higher body weight and semi-fasting blood glucose levels and exhibited impaired oral glucose tolerance and insulin resistance relative to mice on the low-fat diet. At the end of the study, the analysis of fasting blood samples revealed that mice on the high-fat diet had increases in serum insulin, leptin, free fatty acids and cholesterol levels. Mice fed the high-fat diet also showed an increase in insulin resistance index and a decrease in β-cell function index. Compared to mice on the high-fat diet, the 70% replacement of dietary casein with an equal percentage of protein derived from HMDP or HMPH reversed or markedly improved these parameters, and HMDP and HMPH showed similar effects. Conclusions The results demonstrate that replacing dietary casein with the same amount of protein derived from either HMDP or HMPH prevents and improves high-fat-diet-induced obesity and insulin resistance. Funding Sources Atlantic Canada Opportunity Agency through the Atlantic Innovation Fund grant (no. 193,594) and National Research Council of Canada – NHP program.


Sign in / Sign up

Export Citation Format

Share Document