scholarly journals The Effect of Blood-Derived Products on the Chondrogenic and Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Originated from Three Different Locations

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Markus Neubauer ◽  
Olga Kuten ◽  
Christoph Stotter ◽  
Karina Kramer ◽  
Andrea De Luna ◽  
...  

Background. Adipose-derived mesenchymal stem cells (AD-MSCs) from fat tissue considered “surgical waste” during joint surgery may provide a potent source for regenerative medicine. Intra-articular, homologous fat tissue (Hoffa’s fat pad, pouch fat) might possess a superior chondrogenic and osteogenic differentiation potential in comparison to extra-articular, nonhomologous fat. Blood products might further enhance this potential. Methods. AD-MSCs were isolated from fat tissue of 3 donors from 3 locations each, during total knee replacement. Isolated cells were analyzed via flow cytometry. Cells were supplemented with blood products: two types of platelet-rich plasma (EPRP—PRP prepared in the presence of EDTA; CPRP—PRP prepared in the presence of citrate), hyperacute serum (hypACT), and standard fetal calf serum (FCS) as a positive control. The viability of the cells was determined by XTT assay, and the progress of differentiation was tested via histological staining and monitoring of specific gene expression. Results. Blood products enhance ex vivo cell metabolism. Chondrogenesis is enhanced by EDTA-PRP and osteogenesis by citrate PRP, whereas hyperacute serum enhances both differentiations comparably. This finding was consistent in histological analysis as well as in gene expression. Lower blood product concentrations and shorter differentiation periods lead to superior histological results for chondrogenesis. Both PRP types had a different biological effect depending upon concentration, whereas hyperacute serum seemed to have a more consistent effect, independent of the used concentration. Conclusion. (i) Blood product preparation method, (ii) type of anticoagulant, (iii) differentiation time, and (iv) blood product concentration have a significant influence on stem cell viability and the differentiation potential, favouring no use of anticoagulation, shorter differentiation time, and lower blood product concentrations. Cell-free blood products like hyperacute serum may be considered as an alternative supplementation in regenerative medicine, especially for stem cell therapies.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2019 ◽  
Vol 7 (8) ◽  
pp. 1252-1258 ◽  
Author(s):  
Vivi Sofia ◽  
Moch Saiful Bachri ◽  
Rizki Rahmadian

BACKGROUND: Pharmacological therapy in the management of OA causes many new health problems due to side effects caused by long-term use of drugs, such as long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) will cause gastric ulcers and impaired kidney function. In OA pathogenesis, PGE2 gene is involved in the inflammation process. AIM: This study aims to identify the influence of Wharton Jelly Mesenchymal Stem Cell (MSC-WJ) on PGE2 expression gene in synoviocyte by in vitro. MATERIAL AND METHODS: The method used in this study is the co-culture method of primary cells and stem cells in the appropriate media. This research is pure experimental research. The sample used came from synovial tissue of osteoarthritis patients who underwent Total Knee Replacement (TKR) surgery. This study was divided into 6 groups treated with 4 replications. The expression analysis of the Prostaglandin E2 gene was done using qPCR (Real-Time Polymerase Chain Reaction). The expression analysis of the Prostaglandin E2 gene was carried out before and after the co-culture with Wharton's Jelly and continued with the analysis of statistical data processing using the SPSS.15 program. PGE2 gene expression data were processed using the Kruskal-Wallis test and continued with the Mann-Whitney test with a 95% confidence level. RESULTS: The results showed that Mesenchymal Stem Cells Wharton Jelly could reduce the expression of Prostaglandin E2 gene after co-culture for 24 hours and 48 hours in synoviocyte cells osteoarthritis significantly compared with the control group. The administration of Mesenchymal Stem Cells for 24 hours reduced the expression level of PGE2 gene by 0.61 times compared to the control group (p < 0.05) and the administration of Mesenchymal Stem Cells for 48 hours decreased the expression level of PGE2 gene by 0, 47 times compared to the control group (p < 0.05). CONCLUSION: This study concluded that MSC-WJ in OA synoviocyte significantly reduced the expression of the PGE2 gene (p < 0.05).


2020 ◽  
Vol 28 (1) ◽  
pp. 283-302
Author(s):  
Dandan Zhang ◽  
Ni Ni ◽  
Yuyao Wang ◽  
Zhimin Tang ◽  
Huiqin Gao ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


2009 ◽  
Vol 18 (9) ◽  
pp. 1013-1028 ◽  
Author(s):  
Tom K. Kuo ◽  
Jennifer H. Ho ◽  
Oscar K. Lee

Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.


Author(s):  
Karley Bates ◽  
Vincent S. Gallicchio

Since the identification of mesenchymal stem cells, stem cell biology is a greatly researched field of regenerative medicine and tissue engineering therapies and has become an essential part of dentistry. Mesenchymal stem cells are multipotent stem cells that can differentiate into many cell types. Dental mesenchymal stem cell populations have been identified in dental pulp, human exfoliated deciduous teeth, periodontal ligament, dental follicle of third molars, tooth germ of third molars, gingiva of periodontium, alveolar bone, and apical papilla. Dental stem cells are the most natural, noninvasive source of stem cells that have been identified, and they have gained recent attention due to their accessibility and the associated relatively low cost of integration into regenerative therapy. Long-term preservation of dental stem cells is becoming a popular consideration and mirrors the ideology of banking umbilical cord blood. This review outlines the recent progress in the mesenchymal stem cells used in dentistry as well as some advancements that are being made in preserving dental stem cells for future personalized medicine. The aim of this study was to completely and concisely review the current use of adult dental stem cells specifically oral sources of stem cells, banking of dental stem cells, and applications or uses of dental stem cells specifically in oral regions and in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document