scholarly journals Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Ning Dong

The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Ning Dong

The aim of this study was to explore whether the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs (HLECs) were separated and cultured. Our results identified that TGF-β2 induces NEAT1 overexpression in a dose-dependent manner and a time-dependent manner. Additionally, TGF-β2 induced downregulation of E-cadherin and upregulation of fibronectin in primary HLECs through a NEAT1-dependent mechanism. Microarray analysis showed that NEAT1 overexpression inhibited the miR-34a and miR-204 levels in the LECs. The expression of miR-34a and miR-204 was decreased, and the levels of Snail1 and Zeb1 were elevated in human posterior capsule opacification- (PCO-) attached LECs and the LECs obtained from anterior subcapsular cataract (ASC) by quantitative RT-PCR (qRT-PCR). Mechanistic studies revealed that NEAT1 negatively regulates miR-34a or miR-204, and miR-34a or miR-204 directly targets Snail1 or Zeb1 by luciferase assay and RNA-binding protein immunoprecipitation assay, respectively. Overall, the NEAT1/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in TGF-β2-induced EMT of HLECs. In summary, TGF-β2 induces NEAT1 overexpression, which in turn suggests that NEAT1 acts as a ceRNA targeting Snail1 or Zeb1 by binding miR-34a or miR-204, and promotes the progression of EMT of LECs.


2021 ◽  
Author(s):  
Zhan Shi ◽  
Xiumei Zhao ◽  
Ying Su ◽  
Chao Wang ◽  
Hongyan Ge ◽  
...  

Abstract The abnormal proliferation, migration and epithelial-mesenchymal transformation (EMT) of lens epithelial cells (LECs) are the main reasons of vision loss caused by posterior capsular opacification (PCO) after cataract surgery. Insulin-like growth factor-1 (IGF-1) was found to be associated with the pathogenesis of cataract, but its biological role in PCO is poorly understood. In the present study, IGF-1 overexpression facilitated the proliferation, migration and EMT, whereas knockdown of IGF-1 markedly suppressed the proliferation, migration and TGF-β2-induced EMT of LECs. Additionally, To evaluate valuable microRNAs (miRNAs) which target IGF-1 to modulate LECs-EMT, we predicted miR-3666 might regulate IGF-1 by binding its 3’UTR according bioinformatics database. Furthermore, we verified that miR-3666 directly targeted to IGF-1 by luciferase reporter assay. By using miR-3666 mimics, cells proliferation, migration, and invasion were suppressed, while were enhanced by reduction of miR-3666. Knockout of IGF1 reverses the effect of miR-3666 inhibitor on the malignant behavior of LECs. These results indicate the role for miR-3666/IGF-1 in LECs-EMT that offer new strategies for the therapy and prevention of PCO.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Li-Cai Zhang ◽  
Zong-Bin Wei ◽  
Shui-Fu Tang

Renal fibrosis, the leading cause of end-stage renal disease and in which epithelial-mesenchymal transition (EMT) plays a central role, has a complex pathogenesis that is not fully understood. Therefore, we investigated the role of the long noncoding RNA LUCAT1 in the EMT of renal tubular epithelial cells under high-glucose (HG) conditions and the underlying mechanism involved. In this study, we established HG and normal glucose groups of HK-2 cells by treating HK-2 cells 30.0 or 5.5 mmol/L glucose, respectively. To investigate the roles of LUCAT1 and miR-199a-5p in HG-induced EMT, we transfected the HG group with negative control small interfering RNA (siRNA), siRNA targeting LUCAT1, negative control microRNA, or an miR-199a-5p mimic. The results of the quantitative reverse transcription PCR indicated that the LUCAT1 level in the HG group was increased, whereas the miR-199a-5p level was decreased. The EMT in the cells was induced by treatment with HG but was weakened by LUCAT1 knockdown or miR-199a-5p overexpression, which both also inhibited the HG-induced phosphorylation of SMAD3. Moreover, LUCAT1 and ZEB1 mRNA comprised the same microRNA response elements of miR-199a-5p. LUCAT1 knockdown had no effect on the miR-199a-5p level but decreased the HG-induced upregulation of ZEB1. In conclusion, HG conditions induced the upregulation of LUCAT1, and LUCAT1 knockdown inhibited the EMT in HG-treated HK-2 cells. LUCAT1 likely promotes HG-induced EMT through ZEB1 by sponging miR-199a-5p.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ning Dong ◽  
Bing Xu ◽  
Jingmei Xu

The previous study has demonstrated that epidermal growth factor (EGF) and EGF receptor (EGFR) signaling plays a critical role in the development of posterior capsule opacification (PCO) through regulating lens epithelial cells (LECs) proliferation. Recent studies have suggested that the residual LECs undergo proliferation and migration, and epithelial-mesenchymal transition (EMT) is the important cause of PCO formation after cataract surgery. EMT of LECs is considered to be playing a central role in the pathogenesis of PCO. In the present study, we investigated whether and how EGF may regulate EMT of LECs. First, we demonstrated that EGF and EGFR signaling induces Myc overexpression in primary human lens epithelial cells (HLECs). In turn, Myc overexpression could inhibit miR-26b by recruitment of HDAC3. Consequently, the downregulated expression of miR-26b increased the expression of EZH2 in primary HLECs. Mechanistically, miR-26b directly controls EZH2 expression by targeting its 3′-UTR in HLECs by luciferase reporter assays. Finally, we demonstrated that EGF induces the expression of EMT markers in primary HLECs via a miR-26b-dependent mechanism. In summary, EGF activated Myc and Myc overexpression inhibited miR-26b by recruitment of HDAC3, which in turn induced the expression of EZH2 and promoted the progression of EMT in HLECs.


Epigenomics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 487-505 ◽  
Author(s):  
Yingying Jiang ◽  
Kun Wu ◽  
Wei Cao ◽  
Qin Xu ◽  
Xu Wang ◽  
...  

Aim: To explore the biological functions and clinicopathologic significance of the long noncoding RNA KTN1-AS1 in head and neck squamous cell carcinoma (HNSCC). Materials & methods: We assessed the effects of KTN1-AS1 and identified the target miRNA by bioinformatics analysis, luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. The clinicopathologic features of KTN1-AS1 and its target miRNA were analyzed in HNSCC. Results: KTN1-AS1, a competing endogenous RNA, promoted cell proliferation, migration, invasion and epithelial–mesenchymal transition by sponging miR-153-3p in HNSCC. Dysregulation of SNAI1 and ZEB2 mediated the effect of KTN1-AS1 due to miR-153-3p exhaustion. The KTN1-AS1 and miR-153-3p combination can accurately diagnose HNSCC. Conclusion: The KTN1-AS1 and miR-153-3p combination could be a valuable diagnostic and prognostic predictor for HNSCC.


2021 ◽  
Author(s):  
Lin Fang ◽  
Mengcheng Hu ◽  
Fei Xia ◽  
wenxia Bai

Abstract Background: Long non-coding RNAs (lncRNAs) have different functions in different diseases. There is seldom research on the functions of lncRNAs in Crohn’s disease (CD). By RNA-seq technology, we identify a lncRNA associated with Crohn's disease. However, the mechanism of lncRNA regulation remains unknown. This study aimed to determine the association of LINC01272 with epithelial cell-mesenchymal transition and the underlined mechanism in CD.Methods: RNA is detected by qRT-PCR. Interaction of protein and RNA was determined by RNA binding protein immunoprecipitation. Luciferase reporter assays were used to detect the targeted miRNA of LINC01272. Tissue fibrosis was observed by Masson and HE staining. The protein expression is determined by western blot and immunofluorescence. Results: LINC01272 was highly expressed in patients with CD. Knockdown of LINC01272 inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT). Additionally, LINC01272 regulated TGF-β1 induced EMT by miR-153-5p axis and knockdown of LINC01272 inhibited EMT in the CD mice in vivo. Conclusion: LINC01272 activated epithelial-mesenchymal transition through miR-153-5p in CD.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Wei Ye ◽  
Jiyuan Ma ◽  
Fang Wang ◽  
Tong Wu ◽  
Mengmei He ◽  
...  

Diabetic cataract is a common complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a key event in the development of diabetic cataracts. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be highly expressed in different tissues of diabetic patients. This study is aimed at investigating the function and mechanism of MALAT1 in the regulation of EMT in human LECs under high glucose conditions. MALAT1, α-smooth muscle actin (α-SMA), fibronectin (FN), and nuclear factor erythroid-derived 2-like 2 (NRF2) were highly expressed in the LECs of diabetic cataract patients and in the human LECs under high glucose conditions; meanwhile, the decreased expressions of E-cadherin and zonula occludens 1 (ZO-1) were detected. Knockdown of MALAT1 could significantly reduce ROS, prevent EMT, arrest S phase cell cycle, and suppress the expression of total NRF2 and its nucleus translocation in LECs. Furthermore, after NRF2 was knocked down, total NRF2, α-SMA, and FN in cells, and NRF2, Notch intracellular domain (NICD), and Snail were decreased in the nucleus. Using bioinformatics methods, we predicted that MALAT1 and NRF2 shared the same microRNA-144-3p (miR-144-3p) combining site. Luciferase reporter coupled with qRT-PCR assays revealed that miR-144-3p was a target of MALAT1, which was confirmed to downregulate miR-144-3p in the LECs. In addition, after transfection of miR-144-3p mimics or inhibitor, western blot assay demonstrated that miR-144-3p negatively regulated the expression of total NRF2, α-SMA, and FN in cells, and NRF2, NICD, and Snail in the nucleus without affecting Kelch-like ECH-associated protein 1 (KEAP1). Finally, we confirmed that transfection of shMALAT1 inhibited NRF2 expression, and its mediated EMT could be rescued by miR-144-3p inhibitor; transfection of pcDNA3.1-MALAT1 promoted NRF2 expression, and its mediated EMT could be reversed by miR-144-3p inhibitor. In summary, we demonstrate that MALAT1 regulates miR-144-3p to facilitate EMT of LECs via the ROS/NRF2/Notch1/Snail pathway.


Sign in / Sign up

Export Citation Format

Share Document