scholarly journals The Precompression Processing of LMS Algorithm in Noise Elimination

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Pengfei Lin ◽  
Chunsheng Lin ◽  
Ning Zhang ◽  
Xingya wu

In this study, the authors propose a novel precompression processing (PCP) of the least mean squares (LMS) algorithm based on a regulator factor. The novelty of the PCP algorithm is that the compressed input signals vary from each other on different components at each iteration. The input signal of the improved LMS algorithm is precompressed based on the regulator factor. The precompressed input signal is not only related to the regulator factor α and the current value of the input signal at each iteration but also related to the amplitude of the input signal before this iteration. The improved algorithm can eliminate the influence of input signal mutation on the filter performance. In the numerical simulations, we compare the improved LMS algorithm and NLMS algorithm in the cases of normal input signal and input signal with mutation and the influence of different regulator factors on the noise elimination. Results show that the PCP algorithm has good noise elimination effect when the input signal changes abruptly and the regulator factor α = 0.01 can meet the requirements.

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 176 ◽  
Author(s):  
Amjad J. Humaidi ◽  
Ibraheem Kasim Ibraheem ◽  
Ahmed R. Ajel

In this paper we introduce a novel adaptation algorithm for adaptive filtering of FIR and IIR digital filters within the context of system identification. The standard LMS algorithm is hybridized with GA (Genetic Algorithm) to obtain a new integrated learning algorithm, namely, LMS-GA. The main aim of the proposed learning tool is to evade local minima, a common problem in standard LMS algorithm and its variants and approaching the global minimum by calculating the optimum parameters of the weights vector when just estimated data are accessible. In the proposed LMS-GA technique, first, it works as the standard LMS algorithm and calculates the optimum filter coefficients that minimize the mean square error, once the standard LMS algorithm gets stuck in local minimum, the LMS-GA switches to GA to update the filter coefficients and explore new region in the search space by applying the cross-over and mutation operators. The proposed LMS-GA is tested under different conditions of the input signal like input signals with colored characteristics, i.e., correlated input signals and investigated on FIR adaptive filter using the power spectral density of the input signal and the Fourier-transform of the input’s correlation matrix. Demonstrations via simulations on system identification of IIR and FIR adaptive digital filters revealed the effectiveness of the proposed LMS-GA under input signals with different characteristics.


2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.


2021 ◽  
Vol 34 (1) ◽  
pp. 133-140
Author(s):  
Teimour Tajdari

This study investigates the ability of recursive least squares (RLS) and least mean square (LMS) adaptive filtering algorithms to predict and quickly track unknown systems. Tracking unknown system behavior is important if there are other parallel systems that must follow exactly the same behavior at the same time. The adaptive algorithm can correct the filter coefficients according to changes in unknown system parameters to minimize errors between the filter output and the system output for the same input signal. The RLS and LMS algorithms were designed and then examined separately, giving them a similar input signal that was given to the unknown system. The difference between the system output signal and the adaptive filter output signal showed the performance of each filter when identifying an unknown system. The two adaptive filters were able to track the behavior of the system, but each showed certain advantages over the other. The RLS algorithm had the advantage of faster convergence and fewer steady-state errors than the LMS algorithm, but the LMS algorithm had the advantage of less computational complexity.


2013 ◽  
Vol 427-429 ◽  
pp. 1739-1742
Author(s):  
Hai Hong Huang ◽  
Jia Miao ◽  
Hai Xin Wang ◽  
Feng Feng Wang

Based on the grey theory, a novel model is built to predict the input signal of fast control power supply used in Experimental Advanced Superconducting Tokamak (EAST). The model can be used as online metabolic grey filtering and one-step prediction of different input signals. Results of simulation and experiment show that the predicting algorithm based on the grey system model can predict the input signal primarily.


2010 ◽  
Vol 17 (2) ◽  
pp. 299-306
Author(s):  
Adam Żuchowski

On a Certain Class of Expanding Systems The interesting properties of a class of expanding systems are discussed. The operation of the considered systems can be described as follows: the input signal is processed by a linear dynamic converter in subsequent time intervals, each of them is equal to Ti. Processing starts at the moments n · Ti, always after zeroing of converter initial conditions. For smooth input signals and a given transfer function of the converter one can suitably choose Ti and the gain coefficient in order to realize the postulated linear operations on input signals, which is quite different comparing it to the operation realized by the converter. The errors of postulated operations are mainly caused by non-smooth components of the input signal. The principles for choice of system parameters and rules for system optimization are presented in the paper. The referring examples are attached too.


Author(s):  
Alicia Dautt-Silva ◽  
Raymond de Callafon

Abstract The task of trajectory planning for a dual-mirror optical pointing system greatly benefits from carefully designed dynamic input signals. This paper summarizes the application of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop step-response data. The optical pointing system presented consists of two Fast Steering Mirrors (FSM) for which dynamically coupled input signals are designed, while adhering to mechanical and input signal constraints. For the solution, the planned trajectories for the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP) problem is used to compute the dynamic input signal for each of the FSMs, with one of the mirrors acting as an image motion compensation device that guarantees tracking of a planned trajectory within a specified accuracy and the operating constraints of the FSMs.


2020 ◽  
Vol 39 (3) ◽  
pp. 3375-3385
Author(s):  
Shazia Javed ◽  
Noor Atinah Ahmad

Despite its low computational cost, and steady state behavior, some well known drawbacks of the least means squares (LMS) algorithm are: slow rate of convergence and unstable behaviour for ill conditioned autocorrelation matrices of input signals. Several modified algorithms have been presented with better convergence speed, however most of these algorithms are expensive in terms of computational cost and time, and sometimes deviate from optimal Wiener solution that results in a biased solution of online estimation problem. In this paper, the inverse Cholesky factor of the input autocorrelation matrix is optimized to pre-whiten input signals and improve the robustness of the LMS algorithm. Furthermore, in order to have an unbiased solution, mean squares deviation (MSD) is minimized by improving convergence in misalignment. This is done by regularizing step-size adaptively in each iteration that helps in developing a highly efficient optimal preconditioned regularized LMS (OPRLMS) algorithm with adaptive step-size. Comparison of OPRLMS algorithm with other LMS based algorithms is given for unknown system identification and noise cancelation from ECG signal, that results in preference of the proposed algorithm over the other variants of LMS algorithm.


2014 ◽  
Vol 886 ◽  
pp. 390-393
Author(s):  
Jing Mo ◽  
Wei He ◽  
Dan Su ◽  
Jing Wei Wu

It presents the Multi-level filters idea of the adaptive noise cancellation system based on the fact that the adaptive noise cancellation system cant filter out noise signal completely. According to the linear combination and the variable step-size LMS algorithm, it analyzes the effects of the two level filters. Theory analyzing and simulation results prove that the multi-level filter can get a better the filtering effect than the one-filter, which improves the filter performance in terms of the fast convergence speed, tracking speed and the low maladjustment error. And the anti-noise materials with multi-level filter based on the adaptive noise cancellation system has the good de-noising ability of noisy signals.


1987 ◽  
Vol 23 (9) ◽  
pp. 474 ◽  
Author(s):  
G.J. Freij ◽  
B.M.G. Cheetham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document