scholarly journals Population Pharmacokinetics of Clozapine and Norclozapine and Switchability Assessment between Brands in Uruguayan Patients with Schizophrenia

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ismael Olmos ◽  
Manuel Ibarra ◽  
Marta Vázquez ◽  
Cecilia Maldonado ◽  
Pietro Fagiolino ◽  
...  

Clozapine (CZP) is an atypical antipsychotic agent commonly used in the treatment of schizophrenia. It is metabolized primarily by CYP1A2 enzyme, yielding a pharmacologically active metabolite, norclozapine (NCZP). Significant intra- and interindividual pharmacokinetic (PK) variability for CZP and NCZP has been observed in routine therapeutic drug monitoring. So the goal of this study was to evaluate the magnitude and variability of concentration exposure to CZP and its active metabolite NCZP on pharmacokinetic parameters in Uruguayan patients with schizophrenia with a focus on covariates such as cigarette smoking, age, sex, caffeine consumption, brands available of CZP, and comedication using population PK (PPK) modeling methodologies. Patients with a diagnosis of schizophrenia treated with brand-name CZP (Leponex®) for more than a year were included in the study. Then these patients were switched to the similar brand of CZP (Luverina®). Morning predose blood samples for determination of CZP and NCZP using a HPLC system equipped with a UV detector were withdrawn on both occasions at steady state and under the same comedication. Ninety-eight patients, 22 women and 76 men, took part in the study. Mean ± standard deviation for CZP and NCZP concentration was 421 ± 262 ng/mL and 275 ± 180 ng/mL, respectively. After covariate evaluation, only smoking status remained significant in CZP apparent clearance, inducing a mean increment of 32% but with no clinical impact. The results obtained with the two brands of CZP should ensure comparable efficacy and tolerability with the clinical use of either product. Smoking was significantly associated with a lower exposure to CZP due to higher clearance. The results obtained with the two brands commercialized in our country hint a bioequivalence scenario in the clinical setting.

2022 ◽  
Author(s):  
Seyedeh Sana Khezrnia ◽  
Bita Shahrami ◽  
Mohammad Reza Rouini ◽  
Atabak Najafi ◽  
Hamid Reza Sharifnia ◽  
...  

Phenobarbital is still one of the drugs of choice in managing patients with brain injury in the intensive care unit (ICU). However, the impact of acute physiological changes on phenobarbital pharmacokinetic parameters is not well studied. This study aimed to evaluate the pharmacokinetic parameters of parenteral phenobarbital in critically ill patients with brain injury. Patients with severe traumatic or non-traumatic brain injury at high risk of seizure were included and followed for seven days. All patients initially received phenobarbital as a loading dose of 15 mg/kg over 30-minutes infusion, followed by 2 mg/kg/day divided into three doses. Blood samples were obtained on the first and fourth day of study at 1, 2, 5, 8, and 10 hours after the end of the infusion. Serum concentrations of phenobarbital were measured by high-pressure liquid chromatography (HPLC) with an ultraviolet (UV) detector. Pharmacokinetic parameters, including the volume of distribution (Vd), half-life (t1/2), and the drug clearance (CL), were provided by MonolixSuite 2019R1 software using stochastic approximation expectation-maximization (SAEM) algorithm and compared with previously reported parameters in healthy volunteers. Data from seventeen patients were analyzed. The mean value±standard deviation of pharmacokinetic parameters was calculated as follows: Vd: 0.81±0.15 L/kg; t1/2: 6.16±2.66 days; CL: 4.23±1.51 ml/kg/h. CL and Vd were significantly lower and higher than the normal population with the value of 5.6 ml/kg/h (P=0.002) and 0.7 L/kg (P=0.01), respectively. Pharmacokinetic behavior of phenobarbital may change significantly in critically ill brain-injured patients. This study affirms the value of early phenobarbital therapeutic drug monitoring (TDM) to achieve therapeutic goals.


2020 ◽  
Vol 16 (5) ◽  
pp. 602-608
Author(s):  
Niloufar Marsousi ◽  
Serge Rudaz ◽  
Jules A. Desmeules ◽  
Youssef Daali

Background: Ticagrelor is a highly recommended new antiplatelet agent for the treatment of patients with acute coronary syndrome at moderate or high ischemic risk. There is a real need for rapid and accurate analytical methods for ticagrelor determination in biological fluids for pharmacokinetic studies. In this study, a sensitive and specific LC-MS method was developed and validated for quantification of ticagrelor and its Active Metabolite (AM) in human plasma over expected clinical concentrations. Methods: Samples were handled by Liquid-Liquid Extraction (LLE). A linear gradient was applied with a mobile phase composed of formic acid 0.1% and acetonitrile with 0.1% of formic acid using a C18 reversed-phase column. MS spectra were obtained by electrospray ionization in negative mode and optimized at 521.4→360.9 m/z, 477.2→361.2 m/z and 528.1→367.9 m/z transitions for ticagrelor, AM and ticagrelor-d7, respectively. Results: This method allowed rapid elution, in less than 4 minutes, and quantification of concentrations as low as 2 ng/mL for ticagrelor and 1 ng/mL for AM using only 100 μL of human plasma. LLE using hexane/ethyl acetate (50/50) was an optimal compromise in terms of extraction recovery and endogenous compounds interference. Trueness values of 87.8% and 89.5% and precisions of 84.1% and 93.8% were obtained for ticagrelor and AM, respectively. Finally, the usefulness of the method was assessed in a clinical trial where a single 180 mg ticagrelor was orally administered to healthy male volunteers. Pharmacokinetic parameters of ticagrelor and its active metabolite were successfully determined. Conclusion: A sensitive and specific quantification LC-MS-MS method was developed and validated for ticagrelor and its active metabolite determination in human plasma. The method was successfully applied to a clinical trial where a single ticagrelor 180 mg dose was orally administered to healthy male volunteers. The described method allows quantification of concentrations as low as 2 ng/mL of ticagrelor and 1 ng/mL of the metabolite using only 100 μL of plasma.


1996 ◽  
Vol 40 (5) ◽  
pp. 1237-1241 ◽  
Author(s):  
T Whittem ◽  
K Parton ◽  
K Turner

The effects of poly-L-aspartic acid on the pharmacokinetics of gentamicin were examined by using a randomized crossover trial design with the dog. When analyzed according to a three-compartment open model, poly-L-aspartic acid reduced some first-order rate equation constants (A3, lambda 1, and lambda 3), the deep peripheral compartment exit microconstant (k31), the elimination rate constant (k(el)), and the area under the concentration-time curve from 0 to 480 h (AUC0-480) (0.21-, 0.60-, 0.26-, 0.27-, 0.72-, and 0.76-fold, respectively; P < 0.05) but increased the volume of distribution at steady state (Vss), the volume of distribution calculated by the area method (V(area)), the apparent volume of the peripheral compartment (Vp), and all mean time parameters. These results suggested that poly-L-aspartic acid increased the distribution of gentamicin to or binding within the deep peripheral compartment and that poly-L-aspartic acid may have delayed gentamicin transit through the peripheral tissues. In contrast, poly-L-aspartic acid did not alter pharmacokinetic parameters relevant to the central or shallow peripheral compartments to a clinically significant extent. Although gentamicin's pharmacokinetic parameters of relevance to therapeutic drug monitoring were not directly altered, this study has provided pharmacokinetic evidence that poly-L-aspartic acid alters the peripheral distribution of gentamicin. This pharmacokinetic interaction occurred after a single intravenous dose of each drug. Therefore, this interaction should be investigated further, before polyaspartic acid can be considered for use as a clinical nephroprotectant.


Pharmacology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Pavla Pokorná ◽  
Martin Šíma ◽  
Birgit Koch ◽  
Dick Tibboel ◽  
Ondřej Slanař

<b><i>Introduction:</i></b> Sufentanil is a potent synthetic opioid used for analgesia in neonates; however, data concerning drug disposition of sufentanil and dosage regimen are sparse in this population. Therefore, the aim of the study was to explore sufentanil disposition and to propose optimal loading and maintenance doses of sufentanil in ventilated full-term neonates. <b><i>Methods:</i></b> Individual sufentanil pharmacokinetic parameters were calculated based on therapeutic drug monitoring data using a 2-compartmental model. Linear regression models were used to explore the covariates. <b><i>Results:</i></b> The median (IQR) central volume of distribution (Vd<sub>c</sub>) and clearance (CL) for sufentanil were 4.7 (4.1–5.4) L/kg and 0.651 (0.433–0.751) L/h/kg, respectively. Linear regression models showed relationship between Vd<sub>c</sub> (L) and GA (<i>r</i><sup>2</sup> = 0.3436; <i>p</i> = 0.0452) as well as BW (<i>r</i><sup>2</sup> = 0.4019; <i>p</i> = 0.0268). Median optimal sufentanil LD and MD were 2.13 (95% CI: 1.78–2.48) μg/kg and 0.29 (95% CI: 0.22–0.37) μg/kg/h, respectively. Median daily COMFORT-B (IQR) scores ranged from 6 to 23 while no significant relationship between pharmacokinetic parameters and COMFORT-B scores was found. <b><i>Discussion/Conclusion:</i></b> Body weight and gestational age were found as weak covariates for sufentanil distribution, and the dosage regimen was developed for a prospective trial.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 278
Author(s):  
Jennifer Lagoutte-Renosi ◽  
Bernard Royer ◽  
Vahideh Rabani ◽  
Siamak Davani

Ticagrelor is an antiplatelet agent which is extensively metabolized in an active metabolite: AR-C124910XX. Ticagrelor antagonizes P2Y12 receptors, but recently, this effect on the central nervous system has been linked to the development of dyspnea. Ticagrelor-related dyspnea has been linked to persistently high plasma concentrations of ticagrelor. Therefore, there is a need to develop a simple, rapid, and sensitive method for simultaneous determination of ticagrelor and its active metabolite in human plasma to further investigate the link between concentrations of ticagrelor, its active metabolite, and side effects in routine practice. We present here a new method of quantifying both molecules, suitable for routine practice, validated according to the latest Food and Drug Administration (FDA) guidelines, with a good accuracy and precision (<15% respectively), except for the lower limit of quantification (<20%). We further describe its successful application to plasma samples for a population pharmacokinetics study. The simplicity and rapidity, the wide range of the calibration curve (2–5000 µg/L for ticagrelor and its metabolite), and high throughput make a broad spectrum of applications possible for our method, which can easily be implemented for research, or in daily routine practice such as therapeutic drug monitoring to prevent overdosage and occurrence of adverse events in patients.


2015 ◽  
Vol 101 (1) ◽  
pp. e1.41-e1
Author(s):  
Wei Zhao ◽  
Daolun Zhang ◽  
Thomas Storme ◽  
André Baruchel ◽  
Xavier Declèves ◽  
...  

BackgroundChildren with haematological malignancy represent an identified subgroup of the paediatric population with specific pharmacokinetic parameters. In these patients, inadequate empirical antibacterial therapy may result in infection-related morbidity and increased mortality, making optimization of the dosing regimen essential. As paediatric data are limited, our aim was to evaluate the population pharmacokinetics of teicoplanin in order to define the appropriate dosing regimen in this high-risk population.MethodsThe current dose of teicoplanin was evaluated in children with haematological malignancy. Population pharmacokinetics of teicoplanin was analysed using NONMEM software. The dosing regimen was optimised based on the final model.ResultsEighty-five children (age range: 0.5 to 16.9 years) were included. Therapeutic drug monitoring and opportunistic samples (n=143) were available for analysis. With the current recommended dose of 10 mg/kg/day, 41 children (48%) had sub-therapeutic steady-state trough concentrations (Css,min<10 mg/liter). A two-compartment pharmacokinetic model with first-order elimination was developed. Systematic covariate analysis identified that bodyweight (size) and creatinine clearance significantly influenced teicoplanin clearance. The model was validated internally. Its predictive performance was further confirmed in an external validation. In order to reach the target AUC of 750 mg·h/L, 18 mg/kg was required for infants, 14 mg/kg for children and 12 mg/kg for adolescents. A patient-tailored dose regimen was further developed and reduced variability in AUC and Css,min values compared to the mg/kg-basis dose, making the modelling approach an important tool for dosing individualization.ConclusionsThis first population pharmacokinetic study of teicoplanin in children with haematological malignancy provided evidence-based support to individualize teicoplanin therapy in this vulnerable population.


2016 ◽  
Vol 76 (3) ◽  
pp. 566-570 ◽  
Author(s):  
Dae Hyun Yoo ◽  
Chang-Hee Suh ◽  
Seung Cheol Shim ◽  
Slawomir Jeka ◽  
Francisco Fidencio Cons-Molina ◽  
...  

ObjectiveTo demonstrate pharmacokinetic equivalence of CT-P10 and innovator rituximab (RTX) in patients with rheumatoid arthritis (RA) with inadequate responses or intolerances to antitumour necrosis factor agents.MethodsIn this randomised phase I trial, patients with active RA were randomly assigned (2:1) to receive 1000 mg CT-P10 or RTX at weeks 0 and 2 (alongside continued methotrexate therapy). Primary endpoints were area under the serum concentration–time curve from time zero to last quantifiable concentration (AUC0–last) and maximum serum concentration after second infusion (Cmax). Additional pharmacokinetic parameters, efficacy, pharmacodynamics, immunogenicity and safety were also assessed. Data are reported up to week 24.Results103 patients were assigned to CT-P10 and 51 to RTX. The 90% CIs for the ratio of geometric means (CT-P10/RTX) for both primary endpoints were within the bioequivalence range of 80%–125% (AUC0–last: 97.7% (90% CI 89.2% to 107.0%); Cmax: 97.6% (90% CI 92.0% to 103.5%)). Pharmacodynamics and efficacy were comparable between groups. Antidrug antibodies were detected in 17.6% of patients in each group at week 24. CT-P10 and RTX displayed similar safety profiles.ConclusionsCT-P10 and RTX demonstrated equivalent pharmacokinetics and comparable efficacy, pharmacodynamics, immunogenicity and safety.Trial registration numberNCT01534884.


2009 ◽  
Vol 43 (4) ◽  
pp. 726-731 ◽  
Author(s):  
He-Ping Lei ◽  
Guo Wang ◽  
Lian-Sheng Wang ◽  
Dong-sheng Ou-yang ◽  
Hao Chen ◽  
...  

Background: Ginkgo biloba is one of the most popular herbal supplements in the world. The supplement has been shown to induce the enzymatic activity of CYP2C19, the main cytochrome P450 isozyme involved in voriconazole metabolism. Because this enzyme exhibits genetic polymorphism, the inductive effect was expected to be modulated by the CYP2C19 metabolizer status. Objective: To examine the possible effects of Ginkgo biloba as an inducer of CYP2C19 on single-dose pharmacokinetics of voriconazole in Chinese volunteers genotyped as either CVP2C19 extensive or poor metabolizers. Methods: Fourteen healthy, nonsmoking volunteers–7 CYP2C19 extensive metabolizers (2C19*1/2C19*1) and 7 poor metabolizers (2C19*2/2C19*2)–were selected to participate in this study. Pharmacokinetics of oral voriconazole 200 mg after administration of Ginkgo biloba 120 mg twice daily for 12 days were determined for up to 24 hours by liquid chromatography–electrospray tandem mass spectrometry in a 2-phase randomized crossover study with 4-week washout between phases. Results: For extensive metabolizers, the median value for voriconazole area under the plasma concentration–time curve from zero to infinity (AUC0-00) was 5.17 μg•h/mL after administration of voriconazole alone and 4.28 μg•/mL after voriconazole with Ginkgo biloba (p > 0.05). The other pharmacokinetic parameters of voriconazole such as AUC0-24, time to reach maximum concentration, half-life, and apparent clearance also did not change significantly for extensive metabolizers in the presence of Ginkgo biloba. Pharmacokinetic parameters followed a similar pattern for poor metabolizers. Conclusions: The results suggest that 12 days of treatment with Ginkgo biloba did not significantly alter the single-dose pharmacokinetics of voriconazole in either CYP2C19 extensive or poor metabolizers. Therefore, the pharmacokinetic interactions between voriconazole and Ginkgo biloba may have limited clinical significance.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S670-S671
Author(s):  
Ronald G Hall ◽  
Jotam Pasipanodya ◽  
William C Putnam ◽  
John Griswold ◽  
Sharmila Dissanaike ◽  
...  

Abstract Background Antimicrobial dosing in moderate/severe burns patients is complicated due to the potential unpredictable hyperdynamic pathophysiologic states including 1) hypoproteinemia, 2) acute kidney injury and 3) onset of septicemia. Therefore, distribution assumptions about the population pharmacokinetic (PopPK) profiles of either endogenous or xenobiotic pharmacophores in this patient population can lead to biased parameter estimates. In order to prevent potential bias an agnostic nonparametric adaptive grid approach to describe ceftolozane/tazobactam (C/T) PopPK profiles in patients with partial- and full-thickness burns was employed. Methods A human clinical PK study in burn patients was conducted using the standard approved dose of C/T (2 grams/1 gram). A single intravenous dose was administered over 60 minutes. Whole blood was obtained pre-dose and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 16, and 24 hours following the start of infusion. LC-MS/MS bioanalytical methods were developed, validated and employed to determine C/T concentrations in human plasma. PopPK were modeled using Pmetrics package for R. One-, two- and three-compartment models were examined and compared. The influence of several parameters, including %body surface area burns, creatinine clearance (CrCL), weight, albumin and age were tested. Results The bioanalytical method for determination of C/T in human plasma met all recommended criteria of the LC-MS/MS. Five males and one female (ages 24 to 66 years), contributed 148 plasma PK samples. The female had 35% partial-thickness burns. The males had full-thickness burns ranging from 27 to 66%. The median CrCL was 104 mL/min (range 73-148 mL/min). Two-compartment model with absorption (Ka) from compartment 1 to 2 and elimination from compartment 2 (Ke), with nonlinear interactions between C/T elimination and CrCL best described the data. Figure A show that bias was minimal. Importantly, both drugs exhibited marked variability for both volume and elimination (Table), since volume was bimodally distributed (Figure B). A) Observation-versus-Prediction; B) Estimated Ke, V and Ka population parameter densities Summary of pharmacokinetic parameters Conclusion C/T exhibited high variability surpassing that observed with severe infections, suggesting that dose adjustment and/or may be therapeutic drug monitoring may be needed to balance target attainment from dose-related toxicities. Disclosures Ronald G. Hall, II, PharmD, MSCS, Medical Titan Group (Grant/Research Support)Merck (Research Grant or Support)


2013 ◽  
Vol 96 (6) ◽  
pp. 1302-1307 ◽  
Author(s):  
Karim Michail ◽  
Hoda Daabees ◽  
Youssef Beltagy ◽  
Magdy Abd Elkhalek ◽  
Mona Khamis

Abstract A validated HPLC-UV method is presented for the quantification of urinary memantine hydrochloride, a novel medication approved to treat moderate and advanced cases of Alzheimer's disease. The drug and amantadine hydrochloride, the internal standard, were extracted from human urine using SPE. The extract was then buffered and derivatized at room temperature using o-phthalaldehyde in the presence of N-acetyl-L-cyteine. Chromatographic separation of the formed derivatives was achieved on a C18 column using methanol–water mobile phase adjusted to pH 7 and pumped isocratically at 1 mL/min. The UV detector was set at 340 nm. The chromatographic run time did not exceed 10 min. The LOD and LOQ were 8 and 20 ng/mL, respectively. The RSDs for intraday and interday precisions did not exceed 5.5%. The method was used to monitor memantine hydrochloride in human urine in order to determine an appropriate sampling interval for future noninvasive therapeutic drug monitoring. The assay could also be applied to the determination of amantadine. The described assay showed that a postdosing time interval of 25–75 h seems adequate for sampling and monitoring memantine in urine.


Sign in / Sign up

Export Citation Format

Share Document