Surface Microhardness and Flexural Strength of Colored Zirconia

2010 ◽  
Vol 105-106 ◽  
pp. 49-50 ◽  
Author(s):  
Qi Liu ◽  
Long Quan Shao ◽  
Ning Wen ◽  
Bin Deng

The surface microhardness and flexural strength of colored zirconia were examined. Two groups of zirconia disks (1mm thick, 20mm in diameter) within 5 disks each were shading with the same coloring liquids IL2 (Vita Classic-scale) when another group of 5 disks measured in no color. The shading time of one group was 3s and that of the other group was prolonged to 30s. The mechanical properties were tested after sintering at 1500°C. Data were evaluated using ANOVA analysis. Disks of shading 30s showed a lower strength 712  53 MPa. The value of 3s was 853  46 MPa. There were no significant difference on microhardness between the two shading time. Prolonged the shading time lowered the biaxial flexural strength of zirconia ceramic, but shading time did no effect on surface microhardness.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1745
Author(s):  
Tamaki Hada ◽  
Manabu Kanazawa ◽  
Maiko Iwaki ◽  
Awutsadaporn Katheng ◽  
Shunsuke Minakuchi

In this study, the physical properties of a custom block manufactured using a self-polymerizing resin (Custom-block), the commercially available CAD/CAM PMMA disk (PMMA-disk), and a heat-polymerizing resin (Conventional PMMA) were evaluated via three different tests. The Custom-block was polymerized by pouring the self-polymerizing resin into a special tray, and Conventional PMMA was polymerized with a heat-curing method, according to the manufacturer’s recommended procedure. The specimens of each group were subjected to three-point bending, water sorption and solubility, and staining tests. The results showed that the materials met the requirements of the ISO standards in all tests, except for the staining tests. The highest flexural strength was exhibited by the PMMA-disk, followed by the Custom-block and the Conventional PMMA, and a significant difference was observed in the flexural strengths of all the materials (p < 0.001). The Custom-block showed a significantly higher flexural modulus and water solubility. The water sorption and discoloration of the Custom-block were significantly higher than those of the PMMA-disk, but not significantly different from those of the Conventional PMMA. In conclusion, the mechanical properties of the three materials differed depending on the manufacturing method, which considerably affected their flexural strength, flexural modulus, water sorption and solubility, and discoloration.


2019 ◽  
Vol 22 (1) ◽  
pp. Process
Author(s):  
Shereen Ahmed Nossair ◽  
Tarek Salah ◽  
Kamal Khaled Ebeid

Objective: This study was designed to evaluate the biaxial flexural strength (BFS) of different types of unshaded and shaded monolithic zirconia. Material and Methods: 120 monolithic zirconia ceramic discs were fabricated. They were divided into twelve groups (n=10), Group 1; Bruxzir unshaded, Group 2; Bruxzir shaded A2, Group 3; Bruxzir anterior white, Group 4; Bruxzir anterior shade A2, Group 5; Prettau unshaded, Group 6; Prettau shaded with A2 coloring liquid, Group 7; Prettau anterior white, Group 8; Prettau anterior shaded with A2 coloring liquid, Group 9; Katana HT white, Group 10; Katana HT shade A2, Group 11; Katana ST white, Group 12; Katana ST shade A2. All discs were milled using a dental milling machine, and had final dimensions after sintering of 15 mm diameter and 1 mm thickness. BFS was tested using piston on three ball technique. Results:  One-way ANOVA revealed significant differences among the 12 groups. Tukey post-hoc tests revealed no significant differences between the groups 3, 4, ,7 ,8 11, and 12. However, they all had BFS values that are significantly lower than all other groups. Group 2 showed statistically significant higher BFS values when compared to group 3,4, 7, 8, 11, and 12 while it showed statistically significant lower values when compared to groups 1, 5, 6, 9, and 10. Conclusion: Increase in the yttria content in zirconia led to a decrease in its BFS. Shading of zirconia did not have a significant effect on the final strength of zirconia. KeywordsDental ceramics; Dental esthetics; Flexural strength; Shaded zirconia. 


2016 ◽  
Vol 27 (6) ◽  
pp. 670-674 ◽  
Author(s):  
Veridiana Resende Novais ◽  
Priscilla Barbosa Ferreira Soares ◽  
Carlla Martins Guimarães ◽  
Laís Rani Sales Oliveira Schliebe ◽  
Stella Sueli Lourenço Braga ◽  
...  

Abstract This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single-rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jing Liu ◽  
Fa-xing Ding ◽  
Xue-mei Liu ◽  
Zhi-wu Yu ◽  
Zhe Tan ◽  
...  

This study investigates the flexural strength of simply supported steel-concrete composite beams under hogging moment. A total of 24 composite beams are included in the experiments, and ABAQUS software is used to establish finite element (FE) models that can simulate the mechanical properties of composite beams. In a parametric study, the influences of several major parameters, such as shear connection degree, stud arrangement and diameter, longitudinal and transverse reinforcement ratios, loading manner, and beam length, on flexural strength were investigated. Thereafter, three standards, namely, GB 50017, Eurocode 4, and BS 5950, were used to estimate the flexural strength of the composite beams. These codes were also compared with experimental and numerical results. Results indicate that GB 50017 may provide better estimations than the other two codes.


2020 ◽  
Vol 1010 ◽  
pp. 194-199
Author(s):  
Hamdan Yahya ◽  
Aspaniza Ahmad ◽  
Ismail Ibrahim

The effect of Al2O3 to the properties of whiteware porcelain such as water absorption, bulk density, flexural strength and crystalline phases were studied systematically. The result shows that the addition of alumina at maximum 5 wt.% in porcelain bodies increased the flexural strength of the fired bodies which can reach 55.5 MPa, 30% higher than 0.0% alumina content. However, slight decrease in the other physical and mechanical properties was observed with Al2O3 addition higher than 5 wt.%, which is believed to be due to increased corundum phase compared to mullite phase in porcelain body.


2007 ◽  
Vol 336-338 ◽  
pp. 1587-1589
Author(s):  
Wen Xu Li ◽  
Hua Zhao ◽  
Ying Song ◽  
Bin Su ◽  
Fu Ping Wang

Ca3(PO4)2/ZrO2 dental composite ceramics using for CAD/CAM system were prepared and the effects of weak phases on microstructures and mechanical properties were studied. The results showed that intergranular spreads happened with the increasing Ca3(PO4)2 contents due to the discontinuity of weak interfaces between Zirconia and Calcium phosphate in matrix. So the flexural strength and hardness of the Ca3(PO4)2/ZrO2 composite ceramics were decreased effectively, which improved the machinability of the composites. On the other hand, strong interfaces between Zirconias increased the integrality of the ceramic structures. ZrO2 composite Ceramics with 15% Ca3(PO4)2 were sintered at 1350°C. The flexural strength is 300.44MPa, fracture toughness is 4.36 MPam1/2, and hardness is 6.69 GPa. The cutting exponent of the Ca3(PO4)2/ZrO2 composite ceramics is obviously lower than that of the common commercial Vita Mark II and Dicor MGC ceramics, which shows good mechanical properties and machinability.


2012 ◽  
Vol 727-728 ◽  
pp. 993-998 ◽  
Author(s):  
A.M.F.D. Silva ◽  
L.S. Lovise ◽  
Sérgio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

Ashes generated in industrial processes are usually discarded and contribute to environmental pollution. Large scale incorporation into clayey ceramic products for civil construction, such as bricks and tiles, could be a permanent solution. Based on this rationale, this works has as its objective to characterize an ash waste from the incineration of elephant grass and to evaluate its incorporation into a clay to produce red ceramic. The waste was submitted to mineralogical and chemical characterization. Compositions were prepared with incorporation of the waste in amounts of up to 20 wt.% into the clay. Specimens were prepared by extrusion and fired in a laboratory furnace at 850°C. The physical and mechanical properties evaluated were: linear shrinkage, water absorption and flexural strength. The results showed that the waste is mainly composed of quartz and calcium compounds that sensibly reduce the linear shrinkage and does not change the other properties of the ceramic.


2005 ◽  
Vol 287 ◽  
pp. 242-246
Author(s):  
Dong Soo Park ◽  
Y.M. Kim ◽  
Byung Dong Hahn ◽  
Chan Park

Silicon nitride samples without and with 3 wt% of the aligned b-silicon nitride whisker seeds were prepared with 8.2 wt% Er2O3 and 1.9 wt% AlN. After sintering at 2148 K for 4h, the samples exhibited densities higher than 99.5% TD. The microstructures and properties of the samples were compared with those of the samples sintered with 4.8 wt% Y2O3 and 2.2 wt% Al2O3 at 2273 K for 4h. For samples without the whiskers, the sample with 4.8 wt% Y2O3 + 2.2 wt% Al2O3 had coarser microstructures than those with with 8.2 wt% Er2O3 + 1.9 wt% AlN. However, the samples with the whisker seeds, the former sample appeared to have only slightly larger grains than the latter sample in spite of the significant difference in the sintering temperatures. For the samples without the whisker seeds, the room temperature flexural strength was higher for the sample with Er2O3 + AlN. However, for the samples with the aligned whisker seeds, the sample with Y2O3 + Al2O3 exhibited higher room temperature flexural strength than that with Er2O3 + AlN although the average grain width of the former sample was larger than that of the latter sample. In case of the high temperature flexural strength at 1673 K, the flexural strengths of the samples with the whisker seeds were higher than double the strengths of the samples without the whisker seeds. For samples without the whisker seeds, the sample with Er2O3 + AlN exhibited better mechanical properties than that with Y2O3 + Al2O3. However, for the samples with the aligned whisker seeds, the sample with Y2O3 + Al2O3 exhibited better mechanical properties than those with Er2O3 + AlN. The results were explained in terms of the microstructures of the samples.


2019 ◽  
Vol 25 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Ali N. Alobiedy ◽  
Ali H. Alhille ◽  
Ahmed R. Al-Hamaoy

The aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-containing ZrO2 micro and nanoparticles is a promising restorative material with improved mechanical properties expect wear rate losses.  


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Niwut Juntavee ◽  
Apa Juntavee ◽  
Sirintana Phetpanompond

Introduction. High-translucence ceramics have been used increasingly. This study evaluated the biaxial flexural strength of different ceramics as a result of varying thicknesses. Materials and Methods. Circular discs with varied thickness of 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 mm were prepared from high-translucence yttria-partially stabilized zirconia (HTY-PSZ); Bruxzir® Anterior (Bc), and zirconia-reinforced lithium silicate (ZLS) including Celtra® DUO (Cc) and VITA Suprinity® (Vc) (n = 15 discs/group). Biaxial flexural strength (σ) was evaluated utilizing piston-on-three-balls in a testing machine at a speed of 0.5 mm/min. A scanning electron microscope (SEM) was used to determine the microscopic structure. ANOVA and multiple comparisons were analyzed for significant differences (a = 0.05). Results. The mean ± sd value of σ (MPa) for thickness 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 mm was 672.66 ± 107.54, 655.93 ± 93.98, 589.01 ± 63.63, 624.89 ± 87.08, 618.82 ± 83.36, 672.64 ± 84.61, 659.81 ± 122.89, 632.79 ± 92.54, and 657.86 ± 73.17, for Bc; 477.64 ± 88.23, 496.39 ± 86.36, 461.56 ± 57.00, 450.26 ± 86.60, 468.28 ± 83.65, 472.45 ± 53.63, 453.05 ± 72.50, 462.67 ± 47.57, and 535.28 ± 84.33, for Cc; and 500.97 ± 76.36, 506.70 ± 87.76, 557.82 ± 62.78, 543.76 ± 87.29, 507.53 ± 86.09, 502.46 ± 64.75, 557.70 ± 80.91, 527.04 ± 80.78, and 499.88 ± 57.35, for Vc. A significant difference in flexural strength was indicated among groups ( p < 0.05 ). Bc was significantly stronger than Cc and Vc ( p < 0.05 ). Varying thickness did not have a significant influence on strength ( p > 0.05 ). SEM revealed a tight arrangement of crystals for Bc and needle-like crystals diffusing in glass for Vc and Cc. Conclusion. Flexural strength of ceramics varied among types, but each retained strength equitably with varying thickness. HTY-PSZ was stronger than ZLS, but each was equally strong for thickness in the range of 0.4–2.0 mm.


Sign in / Sign up

Export Citation Format

Share Document