scholarly journals Methodological Guidelines for Measuring Energy Consumption of Software Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Luca Ardito ◽  
Riccardo Coppola ◽  
Maurizio Morisio ◽  
Marco Torchiano

Energy consumption information for devices, as available in the literature, is typically obtained with ad hoc approaches, thus making replication and consumption data comparison difficult. We propose a process for measuring the energy consumption of a software application. The process contains four phases, each providing a structured deliverable that reports the information required to replicate the measurement. The process also guides the researcher on a threat to validity analysis to be included in each deliverable. This analysis ensures better reliability, trust, and confidence to reuse the collected consumption data. Such a process produces a structured consumption data for any kind of electronic device (IoT devices, mobile phones, personal computers, servers, etc.), which can be published and shared with other researchers fostering comparison or further investigations. A real case example demonstrates how to apply the process and how to create the required deliverables.

2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


2020 ◽  
Vol 13 (3) ◽  
pp. 422-432
Author(s):  
Madan Mohan Agarwal ◽  
Hemraj Saini ◽  
Mahesh Chandra Govil

Background: The performance of the network protocol depends on number of parameters like re-broadcast probability, mobility, the distance between source and destination, hop count, queue length and residual energy, etc. Objective: In this paper, a new energy efficient routing protocol IAOMDV-PF is developed based on the fixed threshold re-broadcast probability determination and best route selection using fuzzy logic from multiple routes. Methods: In the first phase, the proposed protocol determines fixed threshold rebroadcast probability. It is used for discovering multiple paths between the source and the destination. The threshold probability at each node decides the rebroadcasting of received control packets to its neighbors thereby reducing routing overheads and energy consumption. The multiple paths list received from the first phase and supply to the second phase that is the fuzzy controller selects the best path. This fuzzy controller has been named as Fuzzy Best Route Selector (FBRS). FBRS determines the best path based on function of queue length, the distance between nodes and mobility of nodes. Results: Comparative analysis of the proposed protocol named as "Improved Ad-Hoc On-demand Multiple Path Distance Vector based on Probabilistic and Fuzzy logic" (IAOMDV-PF) shows that it is more efficient in terms of overheads and energy consumption. Conclusion: The proposed protocol reduced energy consumption by about 61%, 58% and 30% with respect to FF-AOMDV, IAOMDV-F and FPAOMDV routing protocols, respectively. The proposed protocol has been simulated and analyzed by using NS-2.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


2021 ◽  
Vol 13 (15) ◽  
pp. 8670
Author(s):  
Xiwen Cui ◽  
Shaojun E ◽  
Dongxiao Niu ◽  
Dongyu Wang ◽  
Mingyu Li

In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1627
Author(s):  
Giovanni Battista Gaggero ◽  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3775 ◽  
Author(s):  
Khaled Bawaneh ◽  
Farnaz Ghazi Nezami ◽  
Md. Rasheduzzaman ◽  
Brad Deken

Healthcare facilities in the United States account for 4.8% of the total area in the commercial sector and are responsible for 10.3% of total energy consumption in this sector. The number of healthcare facilities increased by 22% since 2003, leading to a 21% rise in energy consumption and an 8% reduction in energy intensity per unit of area (544.8 kWh/m2). This study provides an analytical overview of the end-use energy consumption data in healthcare systems for hospitals in the United States. The energy intensity of the U.S. hospitals ranges from 640.7 kWh/m2 in Zone 5 (very hot) to 781.1 kWh/m2 in Zone 1 (very cold), with an average of 738.5 kWh/m2. This is approximately 2.6 times higher than that of other commercial buildings. High energy intensity in the healthcare facilities, particularly in hospitals, along with energy costs and associated environmental concerns make energy analysis crucial for this type of facility. The proposed analysis shows that U.S. healthcare facilities have higher energy intensity than those of most other countries, especially the European ones. This necessitates the adoption of more energy-efficient approaches to the infrastructure and the management of healthcare facilities in the United States.


Sign in / Sign up

Export Citation Format

Share Document