scholarly journals Parameterizing Dark Energy Models and Study of Finite Time Future Singularities

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Tanwi Bandyopadhyay ◽  
Ujjal Debnath

A review on spatially flat D-dimensional Friedmann-Robertson-Walker (FRW) model of the universe has been performed. Some standard parameterizations of the equation of state parameter of the dark energy models are proposed and the possibilities of finite time future singularities are investigated. It is found that certain types of these singularities may appear by tuning some parameters appropriately. Moreover, for a scalar field theoretic description of the model, it was found that the model undergoes bouncing solutions in some favorable cases.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.



2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.



2015 ◽  
Vol 24 (07) ◽  
pp. 1550048 ◽  
Author(s):  
M. Honarvaryan ◽  
A. Sheykhi ◽  
H. Moradpour

In this paper, we point out thermodynamical description of ghost dark energy (GDE) and its generalization to the early universe. Thereinafter, we find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a dark matter (DM) sector is addressed. We will also find the effects of considering the coincidence problem on the mutual interaction between the dark sectors, and thus the equation of state parameter of DE. Finally, we derive a relation between the mutual interaction of the dark components of the universe, accelerated with the either GDE or its generalization, and the thermodynamic fluctuations.



2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.



2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.



2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.



2019 ◽  
Vol 34 (27) ◽  
pp. 1950217 ◽  
Author(s):  
B. Mishra ◽  
Pratik P. Ray ◽  
S. K. Tripathy ◽  
Kazuharu Bamba

We investigate the behavior of the skewness parameters for an anisotropic universe in the framework of General Relativity. Non-interacting dark energy is considered in presence of electromagnetic field. A time-varying deceleration parameter simulated by a hybrid scale factor is considered. The dynamics of the universe is investigated in presence and absence of magnetic field. The equation of state parameter of dark energy evolves within the range predicted by the observations. Magnetic field is observed to have a substantial effect on the cosmic dynamics and the skewness parameters. The models discussed here end in a big rip and become isotropic at finite time.



Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1174
Author(s):  
Muhammad Umair Shahzad ◽  
Ayesha Iqbal ◽  
Abdul Jawad

In this paper, we consider the flat FRW spacetime filled with interacting dark energy and dark matter in fractal universe. We work with the three models of dark energy named as Tsallis, Renyi and Sharma–Mittal. We investigate different cosmological implications such as equation of state parameter, squared speed of sound, deceleration parameter, statefinder parameters, ω e f f - ω e f f ´ (where prime indicates the derivative with respect to ln a , and a is cosmic scale factor) plane and Om diagnostic. We explore these parameters graphically to study the evolving universe. We compare the consistency of dark energy models with the accelerating universe observational data. All three models are stable in fractal universe and support accelerated expansion of the universe.



Sign in / Sign up

Export Citation Format

Share Document