scholarly journals Panax Notoginseng Saponins Ameliorate Aβ-Mediated Neurotoxicity in C. elegans through Antioxidant Activities

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ling Zhou ◽  
Pan-Pan Huang ◽  
Lin-Lin Chen ◽  
Ping Wang

The deposition of amyloid beta (Aβ) is the main hallmark of Alzheimer’s disease (AD) and there is no effective drug to cure the progressive cognitive loss or memory deficits caused by the aggregative toxicity of Aβ protein. Oxidative stress has been hypothesized to play a role in progressive neurodegenerative diseases like AD. Panax notoginseng saponin (PNS) from the rhizome of “pseudo-ginseng” exhibits potent antioxidant effects on aging process in neuron cells and animals. By using C. elegans as an ideal model organism, the present study shows that PNS (0.5–4 mg/mL) can significantly inhibit AD-like symptoms of worm paralysis and enhance resistance to oxidative stress induced by paraquat and aging conditions. Additionally, PNS extends lifespan and maintains healthspan of C. elegans by improving the swimming prowess and fertility at old age. It markedly activates the expression of SKN-1 mRNA, which further supports SKN-1 signaling pathway which is involved in the therapeutic effect of PNS on AD C. elegans. Our results provide direct evidence on PNS for treating AD on gene level and theoretical foundation for reshaping medicinal products of PNS in the future.

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3194
Author(s):  
Begoña Ayuda-Durán ◽  
Susana González-Manzano ◽  
Ana M. González-Paramás ◽  
Celestino Santos-Buelga

The nematode Caenorhabditis elegans was introduced as a model organism in biological research by Sydney Brenner in the 1970s. Since then, it has been increasingly used for investigating processes such as ageing, oxidative stress, neurodegeneration, or inflammation, for which there is a high degree of homology between C. elegans and human pathways, so that the worm offers promising possibilities to study mechanisms of action and effects of phytochemicals of foods and plants. In this paper, the genes and pathways regulating oxidative stress in C. elegans are discussed, as well as the methodological approaches used for their evaluation in the worm. In particular, the following aspects are reviewed: the use of stress assays, determination of chemical and biochemical markers (e.g., ROS, carbonylated proteins, lipid peroxides or altered DNA), influence on gene expression and the employment of mutant worm strains, either carrying loss-of-function mutations or fluorescent reporters, such as the GFP.


2021 ◽  
Vol 15 (3) ◽  
pp. 175-194
Author(s):  
Boutaina Addoum ◽  
◽  
Bouchra El khalfi ◽  
Mohamed Idiken ◽  
Souraya Sakoui ◽  
...  

Background: Antioxidants are developed to assist the immune system and overcome oxidative stress, the aggression of cellular constituents due to imbalance between reactive oxygen species and the inner antioxidant system. The main objective of this study was to search for new and potent antioxidants to protect humans against diseases associated with oxidative stress. Methods: In this study, three pyrano-[2,3-c]-pyrazole derivatives were synthesized via Multicomponent Reaction (MCR) approach and were characterized, using a melting point, High-Performance Liquid Chromatography (HPLC), and spectroscopic analyses (IR; 1H-NMR; 13C-NMR). All of the generated compounds were screened for their antioxidant properties in vivo, using ciliate “Tetrahymena” as a model organism exposed to oxidative and nitrative stress. They were then studied in vitro by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Results: The results demonstrated that the three compounds (5a, b, c) are biologically active and possess potent antioxidant activities, especially the 5a and 5b derivatives. On the other hand, the in vitro bioassays revealed that the 5a derivative possessed a significant antioxidant activity much greater than ascorbic acid. Accordingly, the in silico data are consistent with the experimental data. Conclusion: These findings confirmed the potent antioxidant property of the synthesized compounds, providing us with new inspiration and challenges to design a library of pharmaceutical compounds with strong activity and low toxicity in the future.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Didi Ma ◽  
Jue Wang ◽  
Guo Yin ◽  
Lijun Wang ◽  
Yibao Jin ◽  
...  

Panax notoginseng (PN) is one of the most valuable traditional Chinese medicines and has extensive pharmacological effects. Recent studies demonstrated that PN exhibited pharmacological effect related to Alzheimer’s disease (AD). However, whether steaming process can boost its anti-AD activity is still unexplored. To fill this gap, effects of steaming durations and temperatures on the chemical characterization, neuroprotective and antioxidant activities of PN were systematically investigated in this study. HPLC fingerprint coupled with quantitative analysis demonstrated striking conversion of original saponins to less polar ones with the increase in the steaming time and temperature. In the viewpoint of anti-AD activity on neuroprotective and antioxidant effects, several steamed PN samples (110°C-6/8/10 h, 120°C ‐4/6 h samples) displayed a significant increase both in cell viability and oxygen radical absorption capacity (ORAC) values compared with the no steamed one ( P < 0.01 or P < 0.005 ). Steaming temperature had the greater impact on the change of chemical composition and anti-AD activity of PN. Moreover, the spectrum-effect relationship analysis revealed that the transformed saponins were partially responsible for the increased neuroprotective and antioxidant effects of steamed PN. Therefore, steamed PN could be used as a potential crude drug for prevention and treatment of AD.


2016 ◽  
Vol 74 (6) ◽  
pp. 482-488 ◽  
Author(s):  
Wenna Liang ◽  
Xiaoyang Zhao ◽  
Jinping Feng ◽  
Fenghua Song ◽  
Yunzhi Pan

ABSTRACT Objective Increasing evidence demonstrates that oxidative stress and inflammatory are involved in amyloid β (Aβ)-induced memory impairments. Ursolic acid (UA), a triterpenoid compound, has potent anti-inflammatory and antioxidant activities. However, it remains unclear whether UA attenuates Aβ-induced neurotoxicity. Method The aggregated Aβ25-35 was intracerebroventricularly administered to mice. Results We found that UA significantly reversed the Aβ25-35-induced learning and memory deficits. Our results indicated that one of the potential mechanisms of the neuroprotective effect was attenuating the Aβ25-35-induced accumulation of malondialdehyde (MDA) and depletion of glutathione (GSH) in the hippocampus. Furthermore, UA significantly suppressed the upregulation of IL-1β, IL-6, and tumor necrosis-α factor levels in the hippocampus of Aβ25-35-treated mice. Conclusion These findings suggest that UA prevents memory impairment through amelioration of oxidative stress, inflammatory response and may offer a novel therapeutic strategy for the treatment of Alzheimer’s disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Elizabeth Moreno-Arriola ◽  
Noemí Cárdenas-Rodríguez ◽  
Elvia Coballase-Urrutia ◽  
José Pedraza-Chaverri ◽  
Liliana Carmona-Aparicio ◽  
...  

Caenorhabditis elegansis a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic levelin vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes.C. elegansdisplays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance ofC. elegansas an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.


2021 ◽  
Vol 16 (10) ◽  
pp. 198-206
Author(s):  
Kiran Singh ◽  
Shweta Yadav

Owing to ubiquitous distribution, high abundances and ecological relevance, Caenorhabditis elegans has strong potential interest as barometer of environment and human health. Ecotoxicological methods are used to evaluate the effect of various anthropogenic contaminants on the ecosystems that circumscribe both in-vivo and in-vitro toxicities to explore the pathways and mechanisms of toxicity and to set precise toxicity thresholds. The interest in C. elegans, as a model organism in toxicological studies, has increased over the past few decades. The enticement of C. elegans comes from the ease of metabolically active digestive, sensory, endocrine, neuromuscular, reproductive systems and genetic manipulation along with the ability to fluorescently label neuronal subtypes. The study reviews the competence of Caenorhabditis elegans as a potential model organism in various toxicity assays specifically neurotoxicity and oxidative stress.


2018 ◽  
Vol 24 (19) ◽  
pp. 2107-2120 ◽  
Author(s):  
Nikoletta Papaevgeniou ◽  
Niki Chondrogianni

Polyphenols constitute a group of compounds that have been highly investigated for their beneficial effects against various pathologic and non-pathologic conditions and diseases. Among their multi-faceted properties, their anti-oxidant potential nominates them as ideal protective candidates for conditions characterized by elevated levels of oxidative stress, including aging and age-related diseases. The nematode Caenorhabditis elegans is a multicellular model organism that is highly exploited in studies related to aging and age-associated pathologies. In this review, we will summarize studies where polyphenolic compounds have been tested for their anti-aging potential and their protective role against the progression of age-related diseases using C. elegans as their main model.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Patricia Back ◽  
Bart P. Braeckman ◽  
Filip Matthijssens

Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematodeCaenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for the process of aging for many years, but reviewing the recent studies inC. eleganscalls this theory into question. Thus, it becomes more and more evident that ROS are not merely toxic byproducts of the oxidative metabolism. Rather it seems more likely that tightly controlled concentrations of ROS and fluctuations in redox potential are important mediators of signaling processes. We therefore discuss some theories that explain how redox signaling may be involved in aging and provide some examples of ROS functions and signaling inC. elegansmetabolism. To understand the role of ROS and the redox status in physiology, stress response, development, and aging, there is a rising need for accurate and reversiblein vivodetection. Therefore, we comment on some methods of ROS and redox detection with emphasis on the implementation of genetically encoded biosensors inC. elegans.


2019 ◽  
Vol 10 (9) ◽  
pp. 5531-5543 ◽  
Author(s):  
Zhiyu Fang ◽  
Yutao Chen ◽  
Ge Wang ◽  
Tao Feng ◽  
Meng Shen ◽  
...  

Caenorhabditis elegans is an important model organism for studying stress response mechanisms. In this paper, C. elegans was used to evaluate the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides.


Author(s):  
Alan Anuart González-Rangel ◽  
Rosa E. Navarro

The pocket protein family controls several cellular functions such as cell cycle, differentiation, and apoptosis, among others; however, its role in stress has been poorly explored. The roundworm Caenorhabditis elegans is a simple model organism whose genes are highly conserved during evolution. C. elegans has only one pocket protein, LIN-35; a pRB-related protein similar to p130. To control the expression of some of its targets, LIN-35 interacts with E2F-DP transcription factors and LIN-52, a member of SynMUV (Synthetic Muv complex). Together, these proteins form the DRM complex, which is also known as the DREAM complex in mammals. In this review, we will focus on the role of LIN-35 and its partners in the stress response. It has been shown that LIN-35 is required to control starvation in L1 and L4 larval stages, and to induce starvation-induced germ apoptosis. Remarkably, during L1 starvation, insulin/IGF-1 receptor signaling (IIS), as well as the pathogenic, toxin, and oxidative stress-responsive genes, are repressed by LIN-35. The lack of lin-35 also triggers a downregulation of oxidative stress genes. Recent works showed that lin-35 and hpl-2 mutant animals showed enhanced resistance to UPRER. Additionally, hpl-2 mutant animals also exhibited the upregulation of autophagic genes, suggesting that the SynMuv/DRM proteins participate in this process. Finally, lin-35(n745) mutant animals overexpressed hsp-6, a chaperone that participated in the UPRmt. All of these data demonstrate that LIN-35 and its partners play an important role during the stress response.


Sign in / Sign up

Export Citation Format

Share Document