scholarly journals Activated Carbon from Prickly Pear Seed Cake: Optimization of Preparation Conditions Using Experimental Design and Its Application in Dye Removal

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Y. El Maguana ◽  
N. Elhadiri ◽  
M. Bouchdoug ◽  
M. Benchanaa ◽  
A. Jaouad

In the present study, the experimental design method was used to optimize the preparation conditions of an activated carbon from prickly pear seed cake by phosphoric acid activation. The parameters studied include impregnation ratio, carbonization temperature, and carbonization time. The optimal conditions for the preparation of the activated carbon with high adsorption capacity for methylene blue were identified to be an impregnation ratio of 2.9, carbonization temperature of 541°C, and carbonization time of 88 min. The obtained activated carbon was characterized by SEM/EDX, FTIR, pHpzc, and its capacity to adsorb methylene blue. FTIR analysis and pHPZC showed the acidic character of the activated carbon surface. The adsorption capacity of the optimal activated carbon was found to be 260 mg·g−1 for methylene blue. The adsorption equilibrium of methylene blue was well explained by the pseudo-second-order model and Freundlich isotherm. Furthermore, the performance of the produced activated carbon was examined by the methyl orange removal.

2012 ◽  
Vol 518-523 ◽  
pp. 2298-2302
Author(s):  
Yue Zhou ◽  
Wei Guo Pan ◽  
Rui Tang Guo ◽  
Xiao Bo Zhang ◽  
Xue Ping Wen ◽  
...  

In order to reduce power plant nitric oxide emission with gaining economical adsorbent, activated carbon was prepared from the raw materials of orange peel under different operating conditions in this paper. The methylene blue adsorption value of different activated carbon has also been tested, and the effects on the methylene blue adsorption performance of different dipping concentration, activation time and carbonization temperature were studied. The finding is that the dipping concentration has the most important impact on methylene blue adsorption value. The highest methylene blue adsorption value of orange peel activated carbon has shown as 277.746mg/g under the following conditions: phosphoric acid concentration was 40%, activation time was 12 hours and carbonization temperature was 500°C. It is a economically feasible absorbent material through a great deal of experiments and analysis.


Author(s):  
Rene B. N. Lekene ◽  
Naphtali O. Ankoro ◽  
Ndi J. Nsami ◽  
Daouda Kouotou ◽  
Abdoul N. Rahman ◽  
...  

The optimization conditions of preparation of activated carbons based Balanites aegytiaca shells by chemical activation was investigated. The effects of three parameters of preparation namely, the activation temperature (600-800 °C), impregnation ratio (1:4-3:8) and residence time (60-120 min) were thoroughly studied on the activated carbon yield (Yld, Y1), iodine number (ION,Y2) and methylene blue number (MBN, Y3) using the Methodology of Experimental Design (MED). The analysis of variance (ANOVA) under the experimental domain revealed that, the activation temperature of 800 °C, residence time of 02hrs and impregnation ratio of 1:2 were the optimum conditions of preparation leading to activated carbon yield of 23.0%, iodine number of 889.0 mg/g and methylene blue number of 9.7 mg/g. The polynomial equation showed that the three parameters were both synergetic and antagonistic on the responses retained. The higher values of iodine numbers obtained alongside the experimental matrix is an indication that the activated carbons so prepared were mainly microporous.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3284
Author(s):  
Zhen Li ◽  
Yonghong Li ◽  
Jiang Zhu

Straw is one of the largest agricultural biowastes and a potential alternative precursor of activated carbon. Activated carbon prepared from different types of straw have great differences in structure and adsorption performance. In order to explore the performance of different straw-based activated carbon in volatile organic compounds adsorption, five common straws were selected as potential source materials for the preparation of SAC. The straw-based activated carbons were prepared and characterized via a thermo-gravimetric analysis, scanning electron microscope and the Brunauer–Emmett–Teller method. Among the five straw-based activated carbons, millet straw-derived activated carbon exhibited superior properties in SBET, Smic and adsorption capacities of both toluene and ethyl acetate. Furthermore, the preparation process of millet straw activated carbon was optimized via response surface methodology, using carbonization temperature, carbonization time and impregnation ratio as variables and toluene adsorption capacity, ethyl acetate adsorption capacity and activated carbon yield as responses. The optimal preparation conditions include a carbonization temperature of 572 °C, carbonization time of 1.56 h and impregnation ratio (ZnCl2/PM, w/w) of 1.60, which was verified experimentally, resulting in millet straw activated carbon with a toluene adsorption capacity of 321.9 mg/g and ethyl acetate adsorption capacity of 240.4 mg/g. Meanwhile, the adsorption isothermals and regeneration performance of millet straw activated carbon prepared under the optimized conditions were evaluated. The descriptive ability of the isothermals via the Redlich–Peterson equation suggests a heterogeneous surface on millet straw activated carbon. Recyclability testing has shown that millet straw activated carbon maintained a stable adsorption capacity throughout the second to fifth cycles. The results of this work indicate that millet straw activated carbon may be a potential volatile organic compound adsorbent for industrial application.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2015 ◽  
Vol 1120-1121 ◽  
pp. 343-346
Author(s):  
Cai Ning Zhang ◽  
Xu Man Wang

By means of solution polymerization, a series of cross-linked starch-g-polyacrylamide/ montmorillonite (St-g-PAM/MMT) nanocomposites were prepared and used to adsorb methylene blue (MB). The effects of different preparation conditions on the adsorption capacity of the nanocomposites were investigated. The experimental results demonstrated that the prepared St-g-PAM/MMT nanocomposites were effective adsorbents for removal of MB from aqueous solution. Furthermore, adsorption capacity increased with the MMT contents up to 14% and decreased as the MMT contents further increased. Adsorption capacity increased with the increasing of the ratio of starch to acrylamide, whereas adsorption capacity decreased with the increasing of crosslinking agent contents.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daouda Kouotou ◽  
Horace Ngomo Manga ◽  
Abdelaziz Baçaoui ◽  
Abdelrani Yaacoubi ◽  
Joseph Ketcha Mbadcam

In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.


Sign in / Sign up

Export Citation Format

Share Document