scholarly journals Circular RNA hsa_circ_0007142 Is Upregulated and Targets miR-103a-2-5p in Colorectal Cancer

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-li Zhu ◽  
Xiaofeng Sha ◽  
Yuan Wang ◽  
Jin Li ◽  
Men-yan Zhang ◽  
...  

Circular RNAs (circRNAs) are a large class of endogenous noncoding RNAs that regulate gene expression and mainly function as microRNA sponges. This study aimed to explore the aberrant expression of circRNAs in colorectal cancer (CRC). Using a circRNA microarray, we identified 892 differentially expressed circRNAs between six pairs of CRC and adjacent paracancerous tissues. Among them, hsa_circ_0007142 was significantly upregulated. Further analysis in 50 CRC clinical samples revealed that hsa_circ_0007142 upregulation was associated with poor differentiation and lymphatic metastasis of CRC. Bioinformatic analysis and luciferase reporter assay showed that hsa_circ_0007142 targeted miR-103a-2-5p in CRC cells. Moreover, the silencing of hsa_circ_0007142 by siRNAs decreased the proliferation, migration, and invasion of HT-29 and HCT-116 cells. Taken together, these findings suggest that hsa_circ_0007142 is upregulated in CRC and targets miR-103a-2-5p to promote CRC.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xuexiu Zhang ◽  
Jianning Yao ◽  
Haoling Shi ◽  
Bing Gao ◽  
Haining Zhou ◽  
...  

AbstractCircular RNAs (circRNAs) have been reported to play crucial roles in the progression of various cancers, including colorectal cancer (CRC). SP1 (Sp1 transcription factor) is a well-recognized oncogene in CRC and is deemed to trigger the Wnt/β-catenin pathway. The present study was designed to investigate the role of circRNAs which shared the same pre-mRNA with SP1 in CRC cells. We identified that hsa_circ_0026628 (circ_0026628), a circular RNA that originated from SP1 pre-mRNA, was upregulated in CRC cells. Sanger sequencing and agarose gel electrophoresis verified the circular characteristic of circ_0026628. Functional assays including CCK-8, colony formation, transwell, immunofluorescence staining, and sphere formation assay revealed the function of circ_0026628. RNA pull-down and mass spectrometry disclosed the proteins interacting with circ_0026628. Mechanistic assays including RIP, RNA pull-down, CoIP, ChIP, and luciferase reporter assays demonstrated the interplays between molecules. The results depicted that circ_0026628 functioned as a contributor to CRC cell proliferation, migration, EMT, and stemness. Mechanistically, circ_0026628 served as the endogenous sponge of miR-346 and FUS to elevate SP1 expression at the post-transcriptional level, thus strengthening the interaction between SP1 and β-catenin to activate the Wnt/β-catenin pathway. In turn, the downstream gene of Wnt/β-catenin signaling, SOX2 (SRY-box transcription factor 2), transcriptionally activated SP1 and therefore boosted circ_0026628 level. On the whole, SOX2-induced circ_0026628 sponged miR-346 and recruited FUS protein to augment SP1, triggering the downstream Wnt/β-catenin pathway to facilitate CRC progression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Renjie Wang ◽  
Sai Zhang ◽  
Xuyi Chen ◽  
Nan Li ◽  
Jianwei Li ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been found to play critical roles in the development and progression of various cancers. However, little is known about the effects of the circular RNA network on glioblastoma multiforme (GBM). Methods A microarray was used to screen circRNA expression in GBM. Quantitative real-time PCR was used to detect the expression of circMMP9. GBM cells were transfected with a circMMP9 overexpression vector or siRNA, and cell proliferation, migration and invasion, as well as tumorigenesis in nude mice, were assessed to examine the effect of circMMP9 in GBM. Biotin-coupled miRNA capture, fluorescence in situ hybridization and luciferase reporter assays were conducted to confirm the relationship between circMMP9 and miR-124. Results In this study, we screened differentially expressed circRNAs and identified circMMP9 in GBM. We found that circMMP9 acted as an oncogene, was upregulated in GBM and promoted the proliferation, migration and invasion abilities of GBM cells. Next, we verified that circMMP9 served as a sponge that directly targeted miR-124; circMMP9 accelerated GBM cell proliferation, migration and invasion by targeting miR-124. Furthermore, we found that cyclin-dependent kinase 4 (CDK4) and aurora kinase A (AURKA) were involved in circMMP9/miR-124 axis-induced GBM tumorigenesis. Finally, we found that eukaryotic initiation factor 4A3 (eIF4A3), which binds to the MMP9 mRNA transcript, induced circMMP9 cyclization and increased circMMP9 expression in GBM. Conclusions Our findings indicate that eIF4A3-induced circMMP9 is an important underlying mechanism in GBM cell proliferation, invasion and metastasis through modulation of the miR-124 signaling pathway, which could provide pivotal potential therapeutic targets for the treatment of GBM. Graphical abstract


2020 ◽  
Vol 29 (4) ◽  
pp. 531-542
Author(s):  
Xiaowen He ◽  
Jun Ma ◽  
Mingming Zhang ◽  
Jianhua Cui ◽  
Hao Yang

Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.


2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tao Jiang ◽  
Hongyu Wang ◽  
Lianyu Liu ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

Abstract Background Accumulating studies have revealed that aberrant expression of circular RNAs (circRNAs) is widely involved in the tumorigenesis and progression of malignant cancers, including colorectal cancer (CRC). Nevertheless, the clinical significance, levels, features, biological function, and molecular mechanisms of novel circRNAs in CRC remain largely unexplored. Methods CRC-related circRNAs were identified through bioinformatics analysis and verified in clinical specimens by qRT–PCR and in situ hybridization (ISH). Then, in vitro and in vivo experiments were performed to determine the clinical significance of, functional roles of, and clinical characteristics associated with circIL4R in CRC specimens and cells. Mechanistically, RNA pull-down, fluorescence in situ hybridization (FISH), luciferase reporter, and ubiquitination assays were performed to confirm the underlying mechanism of circIL4R. Results CircIL4R was upregulated in CRC cell lines and in sera and tissues from CRC patients and was positively correlated with advanced clinicopathological features and poor prognosis. Functional experiments demonstrated that circIL4R promotes CRC cell proliferation, migration, and invasion via the PI3K/AKT signaling pathway. Mechanistically, circIL4R was regulated by TFAP2C and competitively interacted with miR-761 to enhance the expression of TRIM29, thereby targeting PHLPP1 for ubiquitin-mediated degradation to activate the PI3K/AKT signaling pathway and consequently facilitate CRC progression. Conclusions Our findings demonstrate that upregulation of circIL4R plays an oncogenic role in CRC progression and may serve as a promising diagnostic and prognostic biomarker for CRC detection and as a potential therapeutic target for CRC treatment.


2020 ◽  
Author(s):  
Liang Jing ◽  
Junhui Wu ◽  
Xiaocheng Tang ◽  
Min Ma ◽  
Fei Long ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a novel class of noncoding RNAs. Increasing evidence indicates that circRNAs play an important role in the occurrence and development of tumors. However, the role of circRNA hsa_circ_0044556 in the progression of colorectal cancer (CRC) remains unclear. Methods: First, we searched for differentially expressed circRNAs using a circRNA microarray in paired CRC and adjacent normal tissues. The circRNA hsa_circ_0044556 was screened out from the existing CRC circRNA microarray in the Gene Expression Omnibus database and our microarray. The clinical significance of hsa_circ_0044556 expression level in CRC patients was then investigated. Finally, the functions of the targets of this circRNA were determined in CRC cell lines.Results:Hsa_circ_0044556 was highly expressed in CRC patients and was positively correlated with tumor stage and lymph node metastasis. In CRC cell lines, the proliferation, migration, and invasion of cancer cells were inhibited by knocking down hsa_circ_0044556 expression.Conclusion: Hsa_circ_0044556 promoted the progression of CRC. It is possible that hsa_circ_0044556 will become a novel biomarker or therapeutic target for CRC.


Sign in / Sign up

Export Citation Format

Share Document