scholarly journals Establishment of Fluorescence Sensitization Method for Hydroxysafflor Yellow A

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
CAO Haiyan ◽  
QIN Xiude ◽  
LIU Chen ◽  
ZHAO Xinzhe ◽  
MA Yuhui ◽  
...  

As the main active ingredient in Chinese medicine safflower, hydroxysafflor yellow A (HSYA) has multiple pharmacological effects. In the work, the absorption and fluorescence spectra of HSYA under different environmental conditions (such as acidity, temperature, ions, viscosity, and surfactant) were investigated. The fluorescence intensity of HSYA varied greatly with acidity, temperature, viscosity, and surfactant, but was less affected by common cations and anions. Among various surfactants, we found that borax can significantly enhance the HSYA fluorescence intensity, and thus, a borax-HSYA sensitization system for HSYA fluorescence was established. In the optimized sensitization system, the fluorescence intensity of HSYA increased by 20 times and showed a good linearity with HSYA concentrations in the range of 0∼10 μM with a detection limit of 8 nM. The borax-HSYA sensitization system is nontoxic to T24 cells and mice and can be used for the fluorescence imaging of HSYA in cells, thereby providing an effective method for analyzing HSYA in vitro and monitoring its metabolism in cells.

2006 ◽  
Vol 505-507 ◽  
pp. 667-672 ◽  
Author(s):  
Chih Hui Yang ◽  
Kuo Chin Lin ◽  
Yu Huai Chang ◽  
Yu Cheng Lin

This paper described and characterized the quantum dots (QDs) with/without the polymeric PLGA applied in MC3T3E-1 delivery. Neat QDs were treated with various solvents, temperatures, exposure time and concentration to evaluate their stability and efficacy. We found that the intensity degree of fluorescence spectra (QDs) in different solvents follows the order: ether > THF > acetone > chloroform > methanol. Importantly, the QDs become inactive after 8-hr dissolution in the solvents of ether, THF or chloroform. According to this result, acetone and methanol are ideal solvents for QDs. The optimum concentration range of QDs in acetone is 5 to 10 mg/mL. We found that no obvious difference of fluorescence intensity was detected in QDs stored respectively at 4 °C, 24 °C and 44 °C (8-hour). When QDs were exposed to UV light (312 nm) for 2 hr, serious decay of fluorescence intensity was observed. In order to extend the application of QDs in medical areas, we encapsulated them in individual biocompatible poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for in-vitro imaging of endocytosis in MC3T3E-1 cells. We demonstrated that the polymeric PLGA have the ability to permeate the cells for cellular internalization; the endocytotic activity could be enhanced by the polymeric QDs-encapsulated PLGA.


2019 ◽  
Vol 30 (6) ◽  
pp. 2327-2338
Author(s):  
Kamila Butowska ◽  
Witold Kozak ◽  
Magdalena Zdrowowicz ◽  
Samanta Makurat ◽  
Michał Rychłowski ◽  
...  

Abstract Conjugating an anticancer drug of high biological efficacy but large cytotoxicity with a “transporting” molecule of low toxicity constitutes a valuable approach to design safe drug delivery system. In the present study, doxorubicin (DOX) a drug of large cardiotoxicity was chemically conjugated to a C60-fullerene. The synthesized molecule, a fullerene-doxorubicin conjugate (Ful-DOX), was characterized using the 1H NMR and MALDI TOF mass spectrometry. The absorption and fluorescence spectra and dynamic light scattering of the conjugate were recorded in an aqueous solution, while the impact on viability of several cancer cell lines of the free DOX and the conjugate was compared using the SRB and WST-1 assays. A low antiproliferative activity of the conjugate as compared to the free DOX is a consequence of the presence of fullerene moiety in the former, which is also responsible for the conjugate aggregation in an aqueous solution. Unlike free DOX, these aggregates cannot pass through the nuclear membrane (as demonstrated by the confocal microscopy measurements), which makes them marginally cytotoxic.


2020 ◽  
Vol 17 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Xuan Chen ◽  
Sumei Zhang ◽  
Peipei Shi ◽  
Yangli Su ◽  
Dong Zhang ◽  
...  

Objective: Ischemia-reperfusion (I/R) injury is a pathological feature of ischemic stroke. This study investigated the regulatory role of miR-485-5p in I/R injury. Methods: SH-SY5Y cells were induced with oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Cells were transfected with designated constructs (miR-485- 5p mimics, miR-485-5p inhibitor, lentiviral vectors overexpressing Rac1 or their corresponding controls). Cell viability was evaluated using the MTT assay. The concentrations of lactate dehydrogenase, malondialdehyde, and reactive oxygen species were detected to indicate the degree of oxidative stress. Flow cytometry and caspase-3 activity assay were used for apoptosis assessment. Dual-luciferase reporter assay was performed to confirm that Rac family small GTPase 1 (Rac1) was a downstream gene of miR-485-5p. Results: OGD/R resulted in decreased cell viability, elevated oxidative stress, increased apoptosis, and downregulated miR-485-5p expression in SH-SY5Y cells. MiR-485-5p upregulation alleviated I/R injury, evidenced by improved cell viability, decreased oxidative markers, and reduced apoptotic rate. OGD/R increased the levels of Rac1 and neurogenic locus notch homolog protein 2 (Notch2) signaling-related proteins in cells with normal miR-485-5p expression, whereas miR- 485-5p overexpression successfully suppressed OGD/R-induced upregulation of these proteins. Furthermore, the delivery of vectors overexpressing Rac1 in miR-485-5p mimics-transfected cells reversed the protective effect of miR-485-5p in cells with OGD/R-induced injury. Conclusion: This study showed that miR-485-5p protected cells following I/R injury via targeting Rac1/Notch2 signaling suggest that targeted upregulation of miR-485-5p might be a promising therapeutic option for the protection against I/R injury.


1999 ◽  
Vol 111 (3) ◽  
pp. 198-205 ◽  
Author(s):  
Gerald G. Krueger ◽  
Jeffery R. Morgan ◽  
Marta J. Petersen
Keyword(s):  

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097142
Author(s):  
Xiao-qing Yang ◽  
Sheng-you Yu ◽  
Li Yu ◽  
Lin Ge ◽  
Yao Zhang ◽  
...  

Objective To investigate the mechanism through which tacrolimus, often used to treat refractory nephropathy, protects against puromycin-induced podocyte injury. Methods An in vitro model of puromycin-induced podocyte injury was established by dividing podocytes into three groups: controls, puromycin only (PAN group), and puromycin plus tacrolimus (FK506 group). Podocyte morphology, number, apoptosis rate and microtubule associated protein 1 light chain 3 alpha ( LC3) expression were compared. Results Puromycin caused podocyte cell body shrinkage and loose intercellular connections, but podocyte morphology in the FK506 group was similar to controls. The apoptosis rate was lower in the FK506 group versus PAN group. The low level of LC3 mRNA observed in untreated podocytes was decreased by puromycin treatment; however, levels of LC3 mRNA were higher in the FK506 group versus PAN group. Although LC3-I and LC3-II protein levels were decreased by puromycin, levels in the FK506 group were higher than the PAN group. Fewer podocyte autophagosomes were observed in the control and FK506 groups versus the PAN group. Cytoplasmic LC3-related fluorescence intensity was stronger in control and FK506 podocytes versus the PAN group. Conclusions Tacrolimus inhibited puromycin-induced mouse podocyte damage by regulating LC3 expression and enhancing autophagy.


2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ilaria Frasson ◽  
Paola Soldà ◽  
Matteo Nadai ◽  
Sara Lago ◽  
Sara N. Richter

AbstractG-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


Sign in / Sign up

Export Citation Format

Share Document