scholarly journals Identification of Sudden Stiffness Change in the Acceleration Response of a Nonlinear Hysteretic Structure

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Sheng-Lan Ma ◽  
Shao-Fei Jiang ◽  
Chen Wu ◽  
Si-Yao Wu

The integration of discrete wavelet transform and independent component analysis (DWT-ICA) method can directly identify time-varying changes in linear structures. However, better metrics of structural seismic damage and future performance after an event are related to structural permanent and total plastic deformations. This study proposes a two-stage technique based on DWT-FastICA and improved multiparticle swarm coevolution optimization (IMPSCO) using a baseline nonlinear Bouc–Wen structural model to directly identify changes in stiffness caused by damage as well as plastic or permanent deflections. In the first stage, the measured structural dynamic responses are preprocessed firstly by DWT, and then the Fast ICA is used to extract the feature components that contain the damage information for the purpose of initially locating damage. In the second stage, the structural responses are divided at the identified damage instant into segments that are used to identify the time-varying physical parameters by using the IMPSCO, and the location and extent of damage can accordingly be identified accurately. The efficiency of the proposed method in identifying stiffness changes is assessed under different ground motions using a suite of two different ground acceleration records. Meanwhile, the effect of noise level and damage extent on the proposed method is also analyzed. The results show that in a realistic scenario with fixed filter tuning parameters, the proposed approach identifies stiffness changes within 1.25% of true stiffness within 8.96 s; therefore, it can work in real time. Parameters are identified within 14% of the actual as-modeled value using noisy simulation-derived structural responses. This indicates that, in accordance with different demands, the proposed method can not only locate and quantify damage within a short time with a high precision but also has excellent noise tolerance, robustness, and practicality.

2019 ◽  
Vol 19 (02) ◽  
pp. 1950015 ◽  
Author(s):  
J. W. Zhang ◽  
Q. S. Li

The serviceability of super-tall buildings depends primarily on the wind-induced structural responses, especially accelerations. To mitigate the discomforting structural vibrations, pendulum-type tuned mass damper (TMD) systems are commonly employed in high-rise buildings. However, for a super-tall building with a considerably low fundamental natural frequency, the suspension length of a pendulum-suspended TMD (PTMD) becomes too long to be feasible as it would occupy substantial building space. For the sake of saving valuable space in a super-tall building, a multistage PTMD system is recommended for vibration control. This paper presents a detailed assessment study on the performance of a multistage PTMD system designed for a 600 m high skyscraper located in a typhoon-prone region in China. Wind tunnel tests are first conducted to determine the wind loads on the building for estimation of structural dynamic responses for the scenarios with and without installation of the multistage PTMD system. Optimal design of the multistage PTMD system is then carried out through examining the mitigation efficiency of the PTMD system for a variety of mass and damping ratios. To restrict the strokes of mass dampers in the PTMD system, two-section damping strategy is proposed. The assessment results demonstrate that the multistage PTMD system with two-section damping can function efficiently to suppress the excessive vibrations of the skyscraper, while occupying a minimal space in vertical and horizontal directions. This paper aims to provide an effective and economic design strategy for vibration control of super-tall buildings under wind excitations.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 746 ◽  
Author(s):  
Liang Bai ◽  
Yun-Wen Feng ◽  
Ning Li ◽  
Xiao-Feng Xue ◽  
Yong Cao

A data-driven adaptive iterative learning (IL) method is proposed for the active control of structural vibration. Considering the repeatability of structural dynamic responses in the vibration process, the time-varying proportional-type iterative learning (P-type IL) method was applied for the design of feedback controllers. The model-free adaptive (MFA) control, a data-driven method, was used to self-tune the time-varying learning gains of the P-type IL method for improving the control precision of the system and the learning speed of the controllers. By using multi-source information, the state of the controlled system was detected and identified. The square root values of feedback gains can be considered as characteristic parameters and the theory of imprecise probability was investigated as a tool for designing the stopping criteria. The motion equation was driven from dynamic finite element (FE) formulation of piezoelectric material, and then was linearized and transformed properly to design the MFA controller. The proposed method was numerically and experimentally tested for a piezoelectric cantilever plate. The results demonstrate that the proposed method performs excellent in vibration suppression and the controllers had fast learning speeds.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1330-1344 ◽  
Author(s):  
Ying Lei ◽  
Jubin Lu ◽  
Jinshan Huang

The synthesis of structural health monitoring and vibration control is important in order to provide facilities for constructing smart structures. In recent years, some techniques have been developed to integrate structural identification and optimal vibration control. However, it is still challenging to integrate the identification and vibration control of time-varying structures subject to unknown earthquake excitation. The main difficulties are that structural dynamic responses collected by a simple harmonic motion system are absolute responses under unknown earthquake ground motion while previous identification approaches for unknown external excitation are not applicable for this situation and the need of an efficient algorithm to accurately track the various scenarios of time-varying structures with inexpensive computation to ensure the real-time performance requested by structural vibration control. In this paper, a novel algorithm is presented, in which structural time-varying parameters are treated as ‘virtual unknown inputs’ to the underlying time-invariant structure, a generalized Kalman filter with unknown inputs is proposed for joint identification of joint structural state, unknown earthquake excitation and ‘virtual unknown inputs’ with only partially measured structural absolute responses, and the identification results are integrated in real-time with the instantaneous optimal control scheme to reach the goal of optimal semi-active control provided by magneto-rheological dampers. Some numerical examples of integrated identification and vibration control of various time-varying structures subject to unknown earthquake excitation are used to demonstrate the performances of the proposed algorithm.


2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


2019 ◽  
Vol 35 (2) ◽  
pp. 955-976 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is important to investigate strong-motion time series recorded at dams to understand their complex seismic responses. This paper develops a strong-motion database recorded at existing embankment dams and analyzes correlations between dam dynamic responses and ground-motion parameters. The Japan Commission on Large Dams database used here includes 190 recordings at the crests and foundations of 60 dams during 54 earthquakes from 1978 to 2012. Seismic amplifications and fundamental periods from recorded time series were computed and examined by correlation with shaking intensities and dam geometries. The peak ground acceleration (PGA) at the dam crest increases as the PGA at the foundation bedrock increases, but their ratio gradually decreases. The fundamental period broadly increases with the dam height and PGA at the foundation bedrock. The nonlinear dam response becomes more apparent as the PGA at the foundation bedrock becomes >0.2 g. The prediction models of these correlations are proposed for estimating the seismic response of embankment dams, which can inform the preliminary design stage.


1988 ◽  
Vol 9 (3) ◽  
pp. 241-251
Author(s):  
Zhang Yi-song ◽  
Xu Yin-ge ◽  
Gao Dc-ping

Sign in / Sign up

Export Citation Format

Share Document