scholarly journals Object Detection from the Video Taken by Drone via Convolutional Neural Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Chenfan Sun ◽  
Wei Zhan ◽  
Jinhiu She ◽  
Yangyang Zhang

The aim of this research is to show the implementation of object detection on drone videos using TensorFlow object detection API. The function of the research is the recognition effect and performance of the popular target detection algorithm and feature extractor for recognizing people, trees, cars, and buildings from real-world video frames taken by drones. The study found that using different target detection algorithms on the “normal” image (an ordinary camera) has different performance effects on the number of instances, detection accuracy, and performance consumption of the target and the application of the algorithm to the image data acquired by the drone is different. Object detection is a key part of the realization of any robot’s complete autonomy, while unmanned aerial vehicles (UAVs) are a very active area of this field. In order to explore the performance of the most advanced target detection algorithm in the image data captured by UAV, we have done a lot of experiments to solve our functional problems and compared two different types of representative of the most advanced convolution target detection systems, such as SSD and Faster R-CNN, with MobileNet, GoogleNet/Inception, and ResNet50 base feature extractors.

2018 ◽  
Vol 232 ◽  
pp. 02054
Author(s):  
Cheng Baozhi

The research of anomaly target detection algorithm in hyperspectral imagery is a hot issue, which has important research value. In order to overcome low efficiency of current anomaly target detection in hyperspectral image, an anomaly detection algorithm for hyperspectral images based on wavelet transform and sparse representation was proposed. Firstly, two-dimensional discrete wavelet transform is used to denoise the hyperspectral image, and the new hyperspectral image data are obtained. Then, the results of anomaly target detection are obtained by using sparse representation theory. The real AVIRIS hyperspectral imagery data sets are used in the experiments. The results show that the detection accuracy and false alarm rate of the propoesd algorithm are better than RX and KRX algorithm.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Dong-Hao Chen ◽  
Yu-Dong Cao ◽  
Jia Yan

Aiming at the problem of low pedestrian target detection accuracy, we propose a detection algorithm based on optimized Mask R-CNN which uses the latest research results of deep learning to improve the accuracy and speed of detection results. Due to the influence of illumination, posture, background, and other factors on the human target in the natural scene image, the complexity of target information is high. SKNet is used to replace the part of the convolution module in the depth residual network model in order to extract features better so that the model can adaptively select the best convolution kernel during training. In addition, according to the statistical law, the length-width ratio of the anchor box is modified to make it more accord with the natural characteristics of the pedestrian target. Finally, a pedestrian target dataset is established by selecting suitable pedestrian images in the COCO dataset and expanded by adding noise and median filtering. The optimized algorithm is compared with the original algorithm and several other mainstream target detection algorithms on the dataset; the experimental results show that the detection accuracy and detection speed of the optimized algorithm are improved, and its detection accuracy is better than other mainstream target detection algorithms.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1003
Author(s):  
Shenglian Lu ◽  
Zhen Song ◽  
Wenkang Chen ◽  
Tingting Qian ◽  
Yingyu Zhang ◽  
...  

The leaf is the organ that is crucial for photosynthesis and the production of nutrients in plants; as such, the number of leaves is one of the key indicators with which to describe the development and growth of a canopy. The irregular shape and distribution of the blades, as well as the effect of natural light, make the segmentation and detection process of the blades difficult. The inaccurate acquisition of plant phenotypic parameters may affect the subsequent judgment of crop growth status and crop yield. To address the challenge in counting dense and overlapped plant leaves under natural environments, we proposed an improved deep-learning-based object detection algorithm by merging a space-to-depth module, a Convolutional Block Attention Module (CBAM) and Atrous Spatial Pyramid Pooling (ASPP) into the network, and applying the smoothL1 function to improve the loss function of object prediction. We evaluated our method on images of five different plant species collected under indoor and outdoor environments. The experimental results demonstrated that our algorithm which counts dense leaves improved average detection accuracy of 85% to 96%. Our algorithm also showed better performance in both detection accuracy and time consumption compared to other state-of-the-art object detection algorithms.


Author(s):  
Samuel Humphries ◽  
Trevor Parker ◽  
Bryan Jonas ◽  
Bryan Adams ◽  
Nicholas J Clark

Quick identification of building and roads is critical for execution of tactical US military operations in an urban environment. To this end, a gridded, referenced, satellite images of an objective, often referred to as a gridded reference graphic or GRG, has become a standard product developed during intelligence preparation of the environment. At present, operational units identify key infrastructure by hand through the work of individual intelligence officers. Recent advances in Convolutional Neural Networks, however, allows for this process to be streamlined through the use of object detection algorithms. In this paper, we describe an object detection algorithm designed to quickly identify and label both buildings and road intersections present in an image. Our work leverages both the U-Net architecture as well the SpaceNet data corpus to produce an algorithm that accurately identifies a large breadth of buildings and different types of roads. In addition to predicting buildings and roads, our model numerically labels each building by means of a contour finding algorithm. Most importantly, the dual U-Net model is capable of predicting buildings and roads on a diverse set of test images and using these predictions to produce clean GRGs.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3415 ◽  
Author(s):  
Jinpeng Zhang ◽  
Jinming Zhang ◽  
Shan Yu

In the image object detection task, a huge number of candidate boxes are generated to match with a relatively very small amount of ground-truth boxes, and through this method the learning samples can be created. But in fact the vast majority of the candidate boxes do not contain valid object instances and should be recognized and rejected during the training and evaluation of the network. This leads to extra high computation burden and a serious imbalance problem between object and none-object samples, thereby impeding the algorithm’s performance. Here we propose a new heuristic sampling method to generate candidate boxes for two-stage detection algorithms. It is generally applicable to the current two-stage detection algorithms to improve their detection performance. Experiments on COCO dataset showed that, relative to the baseline model, this new method could significantly increase the detection accuracy and efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1235
Author(s):  
Yang Yang ◽  
Hongmin Deng

In order to make the classification and regression of single-stage detectors more accurate, an object detection algorithm named Global Context You-Only-Look-Once v3 (GC-YOLOv3) is proposed based on the You-Only-Look-Once (YOLO) in this paper. Firstly, a better cascading model with learnable semantic fusion between a feature extraction network and a feature pyramid network is designed to improve detection accuracy using a global context block. Secondly, the information to be retained is screened by combining three different scaling feature maps together. Finally, a global self-attention mechanism is used to highlight the useful information of feature maps while suppressing irrelevant information. Experiments show that our GC-YOLOv3 reaches a maximum of 55.5 object detection mean Average Precision (mAP)@0.5 on Common Objects in Context (COCO) 2017 test-dev and that the mAP is 5.1% higher than that of the YOLOv3 algorithm on Pascal Visual Object Classes (PASCAL VOC) 2007 test set. Therefore, experiments indicate that the proposed GC-YOLOv3 model exhibits optimal performance on the PASCAL VOC and COCO datasets.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 629 ◽  
Author(s):  
Junaid Arshad ◽  
Muhammad Ajmal Azad ◽  
Roohi Amad ◽  
Khaled Salah ◽  
Mamoun Alazab ◽  
...  

Internet of Things (IoT) forms the foundation of next generation infrastructures, enabling development of future cities that are inherently sustainable. Intrusion detection for such paradigms is a non-trivial challenge which has attracted further significance due to extraordinary growth in the volume and variety of security threats for such systems. However, due to unique characteristics of such systems i.e., battery power, bandwidth and processor overheads and network dynamics, intrusion detection for IoT is a challenge, which requires taking into account the trade-off between detection accuracy and performance overheads. In this context, we are focused at highlighting this trade-off and its significance to achieve effective intrusion detection for IoT. Specifically, this paper presents a comprehensive study of existing intrusion detection systems for IoT systems in three aspects: computational overhead, energy consumption and privacy implications. Through extensive study of existing intrusion detection approaches, we have identified open challenges to achieve effective intrusion detection for IoT infrastructures. These include resource constraints, attack complexity, experimentation rigor and unavailability of relevant security data. Further, this paper is envisaged to highlight contributions and limitations of the state-of-the-art within intrusion detection for IoT, and aid the research community to advance it by identifying significant research directions.


2020 ◽  
Vol 12 (4) ◽  
pp. 697 ◽  
Author(s):  
Xiaohui Hao ◽  
Yiquan Wu ◽  
Peng Wang

Traditional detectors for hyperspectral imagery (HSI) target detection (TD) output the result after processing the HSI only once. However, using the prior target information only once is not sufficient, as it causes the inaccuracy of target extraction or the unclean separation of the background. In this paper, the target pixels are located by a hierarchical background separation method, which explores the relationship between the target and the background for making better use of the prior target information more than one time. In each layer, there is an angle distance (AD) between each pixel spectrum in HSI and the given prior target spectrum. The AD between the prior target spectrum and candidate target ones is smaller than that of the background pixels. The AD metric is utilized to adjust the values of pixels in each layer to gradually increase the separability of the background and the target. For making better discrimination, the AD is calculated through the whitened data rather than the original data. Besides, an elegant and ingenious smoothing processing operation is employed to mitigate the influence of spectral variability, which is beneficial for the detection accuracy. The experimental results of three real hyperspectral images show that the proposed method outperforms other classical and recently proposed HSI target detection algorithms.


Sign in / Sign up

Export Citation Format

Share Document