scholarly journals The Materialization Characteristics and Ratio of a New Soil Paste Filling Material

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhi Wang ◽  
Weijian Yu ◽  
Fangfang Liu

In this paper, the research background is the filling and mining of the landscape mineral paste body in Baixian State, Guangxi, China. The strength test of the new paste filling material is carried out by the materials of coal zircon, red soil, and cement, the best ratio between the materials is obtained, and the hydration mechanism of the new paste filling material is studied by XRD diffraction instrument and SEM (scanning electron microscopy) test. The types of hydration products and microstructure forms of filling materials in different age periods are revealed. The test results show that the optimal ratio of the new paste filling material in the coal mine is the quality ratio of coal zircon: red soil: cement as 6 : 2 : 1, and the slurry concentration is 80%, which can not only meet the transportation requirements required by the filling process but also reduce the cost of filling, and with the extension of the maintenance age, the filling material produces more gel products, and the overall structure is more encrypted.

2012 ◽  
Vol 174-177 ◽  
pp. 384-389 ◽  
Author(s):  
Xin Guo Zhang ◽  
Ning Jiang ◽  
Heng Wang ◽  
Yang Yang Li

Based on present situation that coal mining under buildings, water bodies and railways, and solid wastes mainly including coal waste, fly ash in coal mine of our country, optimization proportioning of paste filling material and hydration reaction mechanism is systematicaly researched combining with project practice of paste filling in Daizhuang Coal Mine, Zibo Mining Group. The result shows that: Proportioning design P10 can be used as the optimal proportion results, the rate of cementing material is that the proportion: fly ash: coal waste is 1:4:6, quantity concentration is 74%; Coal waste paste XRD diffraction patterns of different instar shows that its hydration products at different instar stage are mainly gelation of CH, Aft and C-S-H; Relative content of each material in hydration products is different at different instar stage; With scanning electron microscope a certin ettringite is producted after coal waste paste hydrated 8h, and content of C-S-H gelation and CH gelation is increased gradually; Hydration process of portland cement is speed up and the strength of paste is enhanced.


2011 ◽  
Vol 121-126 ◽  
pp. 418-422
Author(s):  
Jin Xiao Liu ◽  
Zeng De Yin ◽  
Wen Bin Sun

This article aims at the accelerating characteristic of coal filling material. We scientifically made a series of proportion on composite-cementing material through uniform design with Portland cement, sulpho-aluminate cement and gypsums. After having testing the capability of this, we found that some certain composite-cementing material strength has been improved, both early and later strength. Furthermore, we also continually analyzed the hydration products and microstructure of composite-cementing material, then determined that early hydration products were mostly ettringites and later were C-S-H-centered and CH-centered gel.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Baek-Joong Kim ◽  
Heebok Choi

The design criteria for a structural foundation with soil cement injected precast piles (SIP) indicate that the cement milk gains a conservatively high compressive strength. In addition, a certain amount of the cement milk is lost to the surrounding soil as a result of the high water-cement ratio. Furthermore, the cost increases since the material needs to be exported to the outside of the construction site to dispose of the waste soil. This study was carried out to develop a new mixing method to replace a portion of the cement milk with site soil and a cement hardener. The applicability of this method was confirmed by examining the basic physical characteristics of the new material by on-site conducting dynamic pile loading and bond capacity tests. The test results indicate that the new filling material reduced the bleeding and reduced the loss of filling material when compared to cement milk, but the compressive strength and the results of the dynamic pile loading and bond capacity tests were lower than those obtained for cement milk. However, the new filling material satisfies the standard criterion for structure design, and the economic benefits of implementing the proposed method, including saving on the amount of cement used and reducing the costs of transporting waste soil, were confirmed.


2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Khalid Abdel-Rahman ◽  
Tim Gerlach ◽  
Martin Achmus

Abstract Self-compacting filling material or controlled low-strength material (CLSM) is a cementitious material which is liquid during filling, and it is used primarily as backfill, e.g., in trenches. Several products are currently used as CLSM such as flowable fill, controlled density fill, flowable mortar and low-strength plastic soil–cement. The low-strength requirement is necessary to allow for future excavation of CLSM. A two-dimensional numerical model was developed using the finite element system ABAQUS. In this model, the material behavior of granular soil and CLSM is described using an elasto-plastic constitutive model with Mohr–Coulomb failure criterion. Rigid and flexible pipes were modeled once embedded in sandy soil and once embedded in self-compacting material. The numerical model allows the modeling of the effect of hardening process on the overall behavior of the pipe–soil system. The main objective of this study is to investigate the behavior of rigid and flexible pipelines embedded in CLSM as a filling material numerically and to show advantages and disadvantages in comparison with the presently widely used filling materials like sand.


2013 ◽  
Vol 753-755 ◽  
pp. 814-818 ◽  
Author(s):  
Shi Qing Nan ◽  
Qian Gao ◽  
Juan Xia Zhang ◽  
Xian Zhang Guo

This paper mainly focuses on revealing the hydration mechanism of new cementitious material of filling body through its microstructure analysis. According to the SEM samples preparation, analysis of different age of filling body microstructure and XRD diffraction mapping, the results showed that the hydration products were with large amount of ettringite, followed by C-S-H gel, calcium and silica. The main reason of strength increasing was the ettringite morphology and the hydration process. It was obtained that the hydration products of different activators were mainly the influence factor of strength, on basis of analyzing the microstructure of different activator materials.


2021 ◽  
Vol 13 (14) ◽  
pp. 7758
Author(s):  
Biao Qian ◽  
Wenjie Yu ◽  
Beifeng Lv ◽  
Haibo Kang ◽  
Longxin Shu ◽  
...  

To observe the effect of recycled sand and nano-clay on the improvement of the early strength of soil-cement (7d), 0%, 10%, 15% and 20% recycled sand were added. While maintaining a fixed moisture content of 30%, the ratios of each material are specified in terms of soil mass percentage. The shear strength of CSR (recycled sand blended soil-cement) was investigated by direct shear test and four groups of specimens (CSR-1, CSR-2, CSR-3 and CSR-4) were obtained. In addition, 8% nano-clay was added to four CSR groups to obtain the four groups of CSRN-1, CSRN-2, CSRN-3 and CSRN-4 (soil-cement mixed with recycled sand and nano-clay), which were also subjected to direct shear tests. A detailed analysis of the modification mechanism of soil-cement by recycled sand and nano-clay was carried out in combination with scanning electron microscopy (SEM) and IPP (ImagePro-Plus) software. The test results showed that: (1) CSR-3 has the highest shear strength due to the “concrete-like” effect of the incorporation of recycled sand. With the addition of 8% nano-clay, the overall shear strength of the cement was improved, with CSRN-2 having the best shear strength, thanks to the filling effect of the nano-clay and its high volcanic ash content. (2) When recycled sand and nano-clay were added to soil-cement, the improvement in shear strength was manifested in a more reasonable macroscopic internal structure distribution of soil-cement. (3) SEM test results showed that the shear strength was negatively correlated with the void ratio of its microstructure. The smaller the void ratio, the greater the shear strength. This shows that the use of reclaimed sand can improve the sustainable development of the environment, and at the same time, the new material of nano-clay has potential application value.


Author(s):  
Leila Ladani ◽  
Lalit Roy

Additive Layer Fabrication, in particular Electron Beam Additive Fabrication (EBAF), has recently drawn much attention for its special usability to fabricate intricately designed parts as a whole. It not only increases the production rate which reduces the production lead time but also reduces the cost by minimizing the amount of waste material to a great extent. Ti6Al4V is the most common type of material that is currently being fabricated using EBAF technique. This material has been used in aerospace industry for several reasons such as excellent mechanical properties, low density, great resistance to corrosion, and non-magnetism. The effects of build direction of layers (namely, addition of layers along one of the x, y & z directions with respect to the build table) and the anisotropy effect caused by it has not been explored vigorously. This anisotropy effect has been investigated in this work. Different mechanical properties such as Yield Strength (YS), Ultimate Tensile Strength (UTS), and Modulus of Elasticity (E) of these three types of Ti6Al4V are determined using tensile tests and are compared with literature. The tensile test results show that YS and UTS for flat-build samples have distinguishably higher values than those of the side-build and top-build samples.


2016 ◽  
Vol 695 ◽  
pp. 247-251
Author(s):  
Alexandru Andrei Iliescu ◽  
Cristian Marian Petcu ◽  
Ileana Cristiana Petcu ◽  
Irina Maria Gheorghiu ◽  
Andrei Iliescu ◽  
...  

The retrograde filling is a critical step to a successful outcome of the endodontic surgery. Despite the progress in the technology of novel root-end filling materials, zinc oxide-eugenol cement superEBA is still preserving its clinical value on long-term basis. The study aimed to reconsider the tissue response to the initial irritating effect of this material. Silicon tubes filled with superEBA were subcutaneously implanted for 120 days in white Wistar rats which were afterwards sacrificed. The connective tissue surrounding the superEBA implants revealed fibroblast proliferation and a definite reparatory process without inflammatory reaction. A non-specific tissue healing in progress around the implants, without calcifications, necrosis, and apoptosis was also described after 4 months. SuperEBA proved on animal model that its cytotoxicity is reducing gradually in time until no adverse reaction is observed. The reduced content in eugenol compared to other surgical zinc oxide cements and the benefic effect of o-ethoxybenzoic acid are the support to reconsider SuperEBA as a biocompatible retrograde filling material.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Wang ◽  
Aixiang Wu ◽  
Lianfu Zhang ◽  
Hongjiang Wang ◽  
Fei Jin

Sedimentation of filling materials could cause pipe blocking accident in mines. However, few quantitative characterization studies have investigated the sedimentation characteristics of filling materials. In this study, the sedimentation property of iron tailings with a cement-sand ratio of 1 : 4 and mass concentration of 73%∼82% was investigated based on rheology measurements. Results showed that shear stress increased as shear rate rose from 0 s−1to 120 s−1. The shear stress increased as the filling material concentration increased as well. However, when the shear rate was reversed from 120 s−1to 0 s−1, the shear stress presented an increase-constant-decrease change pattern as the mass concentration increases in the rheological curve. Accordingly, the sedimentation performance of iron tailings filling material was divided into three types: intense sedimentation (the ascending rheological curve) in the mass concentration range of 73%∼76%, slight sedimentation (the constant rheological curve) in the mass concentration range of 77%∼79%, and almost no sedimentation (the descending rheological curve) in the mass concentration range of 80%∼82%. The associated mechanism involving slurry mass concentration-rheological curves-sedimentation performance was illustrated. A correlation between the pipeline rheology and filling material sedimentation performance was established, which provides a practical guide to avoid pipeline blocking while transporting the filling material.


2014 ◽  
Vol 644-650 ◽  
pp. 381-384
Author(s):  
Xin Zhang ◽  
Hao Zhou ◽  
Guo Song Liu

In order to improve the efficiency of auto parts distribution logistics, to lower the cost of auto production in transportation logistics, and to reduce accidents, in this paper it is designed that an automatic guided vehicle control system to replace the manned tractors in the distribution sites. The system is equipped with an infrared homing device that can ensure the automated guided vehicle (AGV) along a predetermined route automatic driving at a given distribution information, without the needs to manually guided. Test results show that the circuit performance of AGV control system is stable to ensure the accuracy of the tracking in the practical application, and the mean absolute error of the tracking is less than 0.04m.


Sign in / Sign up

Export Citation Format

Share Document