scholarly journals Image Processing-Based Pitting Corrosion Detection Using Metaheuristic Optimized Multilevel Image Thresholding and Machine-Learning Approaches

2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Nhat-Duc Hoang

Pitting corrosion can lead to critical failures of infrastructure elements. Therefore, accurate detection of corroded areas is crucial during the phase of structural health monitoring. This study aims at developing a computer vision and data-driven method for automatic detection of pitting corrosion. The proposed method is an integration of the history-based adaptive differential evolution with linear population size reduction (LSHADE), image processing techniques, and the support vector machine (SVM). The implementation of the LSHADE metaheuristic in this research is multifold. This optimization algorithm is employed in the task of multilevel image thresholding to extract regions of interest from the metal surface. Image texture analysis methods of statistical measurements of color channels, gray-level co-occurrence matrix, and local binary pattern are used to compute numerical features subsequently employed by the SVM-based pattern recognition phase. In addition, the LSHADE metaheuristic is also used to optimize the hyperparameters of the machine-learning approach. Experimental results supported by statistical test points out that the newly developed approach can attain a good predictive result with classification accurate rate = 91.80%, precision = 0.91, recall = 0.94, negative predictive value = 0.93, and F1 score = 0.92. Thus, the newly developed method can be a promising tool to be used in a periodic structural health survey.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Nhat-Duc Hoang ◽  
Van-Duc Tran

To maintain the serviceability of buildings, the owners need to be informed about the current condition of the water supply and waste disposal systems. Therefore, timely and accurate detection of corrosion on pipe surface is a crucial task. The conventional manual surveying process performed by human inspectors is notoriously time consuming and labor intensive. Hence, this study proposes an image processing-based method for automating the task of pipe corrosion detection. Image texture including statistical measurement of image colors, gray-level co-occurrence matrix, and gray-level run length is employed to extract features of pipe surface. Support vector machine optimized by differential flower pollination is then used to construct a decision boundary that can recognize corroded and intact pipe surfaces. A dataset consisting of 2000 image samples has been collected and utilized to train and test the proposed hybrid model. Experimental results supported by the Wilcoxon signed-rank test confirm that the proposed method is highly suitable for the task of interest with an accuracy rate of 92.81%. Thus, the model proposed in this study can be a promising tool to assist building maintenance agents during the phase of pipe system survey.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1055
Author(s):  
Qian Sun ◽  
William Ampomah ◽  
Junyu You ◽  
Martha Cather ◽  
Robert Balch

Machine-learning technologies have exhibited robust competences in solving many petroleum engineering problems. The accurate predictivity and fast computational speed enable a large volume of time-consuming engineering processes such as history-matching and field development optimization. The Southwest Regional Partnership on Carbon Sequestration (SWP) project desires rigorous history-matching and multi-objective optimization processes, which fits the superiorities of the machine-learning approaches. Although the machine-learning proxy models are trained and validated before imposing to solve practical problems, the error margin would essentially introduce uncertainties to the results. In this paper, a hybrid numerical machine-learning workflow solving various optimization problems is presented. By coupling the expert machine-learning proxies with a global optimizer, the workflow successfully solves the history-matching and CO2 water alternative gas (WAG) design problem with low computational overheads. The history-matching work considers the heterogeneities of multiphase relative characteristics, and the CO2-WAG injection design takes multiple techno-economic objective functions into accounts. This work trained an expert response surface, a support vector machine, and a multi-layer neural network as proxy models to effectively learn the high-dimensional nonlinear data structure. The proposed workflow suggests revisiting the high-fidelity numerical simulator for validation purposes. The experience gained from this work would provide valuable guiding insights to similar CO2 enhanced oil recovery (EOR) projects.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1694
Author(s):  
Mathew Ashik ◽  
A. Jyothish ◽  
S. Anandaram ◽  
P. Vinod ◽  
Francesco Mercaldo ◽  
...  

Malware is one of the most significant threats in today’s computing world since the number of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention methods are increasingly becoming necessary for computer systems connected to the Internet. This software exploits the system’s vulnerabilities to steal valuable information without the user’s knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-malware products use signatures for detecting known malware. However, the signature-based method does not scale in detecting obfuscated and packed malware. Considering that the cause of a problem is often best understood by studying the structural aspects of a program like the mnemonics, instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted on four datasets using machine learning and deep learning approaches such as Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and we observed promising results using APIs and system calls. On combining APIs/system calls with static features, a marginal performance improvement was attained comparing models trained only on dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


2020 ◽  
Author(s):  
Murad Megjhani ◽  
Kalijah Terilli ◽  
Ayham Alkhachroum ◽  
David J. Roh ◽  
Sachin Agarwal ◽  
...  

AbstractObjectiveTo develop a machine learning based tool, using routine vital signs, to assess delayed cerebral ischemia (DCI) risk over time.MethodsIn this retrospective analysis, physiologic data for 540 consecutive acute subarachnoid hemorrhage patients were collected and annotated as part of a prospective observational cohort study between May 2006 and December 2014. Patients were excluded if (i) no physiologic data was available, (ii) they expired prior to the DCI onset window (< post bleed day 3) or (iii) early angiographic vasospasm was detected on admitting angiogram. DCI was prospectively labeled by consensus of treating physicians. Occurrence of DCI was classified using various machine learning approaches including logistic regression, random forest, support vector machine (linear and kernel), and an ensemble classifier, trained on vitals and subject characteristic features. Hourly risk scores were generated as the posterior probability at time t. We performed five-fold nested cross validation to tune the model parameters and to report the accuracy. All classifiers were evaluated for good discrimination using the area under the receiver operating characteristic curve (AU-ROC) and confusion matrices.ResultsOf 310 patients included in our final analysis, 101 (32.6%) patients developed DCI. We achieved maximal classification of 0.81 [0.75-0.82] AU-ROC. We also predicted 74.7 % of all DCI events 12 hours before typical clinical detection with a ratio of 3 true alerts for every 2 false alerts.ConclusionA data-driven machine learning based detection tool offered hourly assessments of DCI risk and incorporated new physiologic information over time.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Sign in / Sign up

Export Citation Format

Share Document