scholarly journals Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic Cardiomyopathy by Using Open Targets Platform: A Systematic Review

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Fahmi Shaher ◽  
Hongbin Qiu ◽  
Shuqiu Wang ◽  
Yu Hu ◽  
Weiqun Wang ◽  
...  

Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.

2018 ◽  
Vol 238 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Sheng-Gao Tang ◽  
Xiao-Yu Liu ◽  
Ji-Ming Ye ◽  
Ting-Ting Hu ◽  
Ying-Ying Yang ◽  
...  

Diabetes-induced injury of myocardium, defined as diabetic cardiomyopathy (DCM), accounts for significant mortality and morbidity in diabetic population. Alleviation of DCM by a potent drug remains considerable interests in experimental and clinical researches because hypoglycemic drugs cannot effectively control this condition. Here, we explored the beneficial effects of isosteviol sodium (STVNa) on type 1 diabetes-induced DCM and the potential mechanisms involved. Male Wistar rats were induced to diabetes by injection of streptozotocin (STZ). One week later, diabetic rats were randomly grouped to receive STVNa (STZ/STVNa) or its vehicle (STZ). After 11 weeks of treatment or 11 weeks treatment following 4 weeks of removal of the treatment, the cardiac function and structure were evaluated and related mechanisms were investigated. In diabetic rats, oxidative stress, inflammation, blood glucose and plasma advanced glycation end products (AGEs) were significantly increased, whereas superoxide dismutase 2 (SOD-2) expression and activity were decreased. STVNa treatment inhibited cardiac hypertrophy, fibrosis and inflammation, showed similar ratio of heart to body weight and antioxidant capacities almost similar to the normal controls, which can be sustained at least 4 weeks. Moreover, STVNa inhibited diabetes-inducted stimulation of both extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) signal pathways. However, blood glucose, plasma AGE and insulin levels were not altered by STVNa treatment. These results indicate that STVNa may be developed into a potent therapy for DCM. The mechanism underlying this therapeutic effect involves the suppression of oxidative stress and inflammation by inhibiting ERK and NF-κB without changing blood glucose or AGEs.


2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.


2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2099 ◽  
Author(s):  
Reham Samir Hamida ◽  
Gadah Albasher ◽  
Mashael Mohammed Bin-Meferij

Green nanoparticles represent a revolution in bionanotechnology, providing opportunities to fight life-threatening diseases, such as cancer, with less risk to the environment and to human health. Here, for the first time, we systematically investigated the anticancer activity and possible mechanism of novel silver nanoparticles (N-SNPs) synthesized by Nostoc Bahar M against the MCF-7 breast cancer cells, HCT-116 colorectal adenocarcinoma cells, and HepG2 liver cancer cells, using cell viability assays, morphological characterization with inverted light and transmission electron microscopy, antioxidants and enzymes (glutathione peroxidase (GPx), glutathione (GSH), adenosine triphosphatase (ATPase), and lactate dehydrogenase (LDH)), and western blotting (protein kinase B (Akt), phosphorylated-Akt (p-Akt), mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), tumor suppressor (p53), and caspase 3). N-SNPs decreased the viability of MCF-7, HCT-116, and HepG2 cells, with half-maximal inhibitory concentrations of 54, 56, and 80 µg/mL, respectively. They also significantly increased LDH leakage, enhanced oxidative stress via effects on antioxidative markers, and caused metabolic stress by significantly decreasing ATPase levels. N-SNPs caused extensive ultrastructural alterations in cell and nuclear structures, as well as in various organelles. Furthermore, N-SNPs triggered apoptosis via the activation of caspase 3 and p53, and suppressed the mTOR signaling pathway via downregulating apoptosis-evading proteins in MCF-7, HCT-116, and HepG2 cells. Ultrastructural analysis, together with biochemical and molecular analyses, revealed that N-SNPs enhanced apoptosis via the induction of oxidative stress and/or through direct interactions with cellular structures in all tested cells. The cytotoxicity of Nostoc-mediated SNPs represents a new strategy for cancer treatment via targeting various cell death pathways. However, the potential of N-SNPs to be usable and biocompatible anticancer drug will depend on their toxicity against normal cells.


2021 ◽  
pp. 111410
Author(s):  
Mohammad H. Abukhalil ◽  
Osama Y. Althunibat ◽  
Saleem H. Aladaileh ◽  
Wesam Al-Amarat ◽  
Heba M. Obeidat ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


Sign in / Sign up

Export Citation Format

Share Document