scholarly journals Study on the Influence of Closed-Cell Aluminum Foam on the Impact Performance of Concrete Pier after Equal Replacement with Stainless Steel Reinforcement

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiwu Zhou ◽  
Honglong Zhang ◽  
Wenchao Zhang ◽  
Guoxue Zhang

In this study, the impact test of two groups of reinforced concrete piers protected by closed-cell aluminum foam is carried out by using the ultrahigh drop hammer impact test system. The purpose of this study is to explore the impact resistance and protective performance of closed-cell aluminum foam under the impact load on the concrete bridge pier after replacing the ordinary reinforcement with stainless steel reinforcement. The study results show that the impact force is related to the overall stiffness of the specimen, as well as to the failure mode. When the impact velocity is less than 1.42 m/s, the closed-cell aluminum foam is in an elastic or yielding stage. The change rate of impact force (231 and 97.5, respectively), tip displacement (33.5 and 18, respectively), and ultrasonic damage rate of the concrete in the two groups of specimen is relatively small, while the change rate of the two groups of specimen remains approximately consistent. In addition, when the impact is greater than 1.42 m/s and the closed-cell aluminum foam is in the densification stage, the change rate of the impact force (increase from 231 to 819 and from 97.5 to 984.5), the tip displacement (increase from 33.5 to 67 and from 18 to 62), and ultrasonic damage rate of concrete are larger, which results in an increase in the dynamic response of the structure.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiwu Zhou ◽  
Honglong Zhang ◽  
Wenchao Zhang ◽  
Guoxue Zhang

In the present study, in order to examine the impact performances of ordinary reinforced concrete bridge piers which have been replaced by stainless-steel bars of equal cross-sections under the protective condition of anticollision material, the impact dynamic responses of the ordinary reinforced concrete bridge piers, with replacements under the protection of closed-cell aluminum foam, were compared and analyzed using an ultrahigh drop hammer impact test system. The results showed that when the impact velocity was small (for example, less than 1.42 M/s), after the implementation of equal cross-sectional replacements, the closed-cell aluminum foam had been in an elastic or yield stage. During that stage, the impact forces of the stainless-steel reinforced concrete piers were larger than those of the ordinary reinforced concrete piers, and the relative ratios were stable at approximately 28 to 34%. In addition, the relative ratios of the displacements at the tops of the components were also found to be stable at approximately 22%, and the change rates of the concrete ultrasonic damages were approximately the same. However, when the impact forces had increased (for example, more than 1.67 m/s), the closed-cell aluminum foam entered a densification stage, and the peak impact force ratios decreased sharply. It was also observed that the relative peak displacement ratios at the tops of the components displayed increasing trends, and the change rates of the concrete ultrasonic damages had displayed major flux. Therefore, the replacement of the ordinary piers with stainless-steel bars had increased the possibility of shear failures.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiwu Zhou ◽  
Wen Zhang ◽  
Xiangyu Wang ◽  
Wenchao Zhang ◽  
Meng Zhan

In this study, the lateral impact tests of six RC piers which were protected by closed-cell aluminum foam (CCAF) were carried out by making use of an ultrahigh drop hammer horizontal impact test system. The protective effects of CCAF with different densities on the piers were then analyzed. The data regarding the piers’ impact force, displacement, reinforcement strain, and crack and damage development were mainly collected during the experimental testing processes. The results indicated that, when the impact energy was less than 7258 J and the density of the CCAF was 0.45 g/cm3, the cumulative impact force and displacements of the piers decreased by 67% and 35%, respectively. Therefore, it was considered that the CCAF with a density of 0.45 g/cm3 had displayed the best protective effects at that stage. It was also observed that when the impact energy was greater than 7258 J and the density of the CCAF was 0.55 g/cm3, the cumulative impact force and displacements of the piers decreased by 25% and 18%, respectively. Therefore, the CCAF with a density of 0.55 g/cm3 had displayed the best protective effects at that stage. Furthermore, under the conditions of constant accumulative impact energy, the protective effects of CCAF on the piers were observed to be weakened if it entered the densification stage too early and high-yield platforms were formed due to the density levels becoming too high. However, it was found that reasonable density and thickness increases could effectively delay the entry of CCAF into the densification stage, which effectively reduced the shearing effects which occurred when the impact speeds were too high, thereby preventing the shear failure of the piers.


2017 ◽  
Vol 888 ◽  
pp. 413-417 ◽  
Author(s):  
Zulaikha Abdullah ◽  
Sufizar Ahmad ◽  
Musfirah Ramli

Metal foams are a cellular structure that has a solid matrix made of metal and has pores in their structure. Metal foams offer excellent combination of properties which led researchers interested in investigation in recent years. Closed-cell stainless steel (SS316L) foams for biomedical application were prepared by space holder method and the physical and morphological properties of SS316L foams were studied. Stainless steel (SS316L) powders as metallic material, polyethylene glycol (PEG) as a binder and Urea as a space holder material were mixed homogenously to avoid the particle wrecked. This mixture was compacted using uniaxial pressing machine and pressurized to 8 tons to formed the green body. By using tube furnace, the SS316L foams was two-stage sintered, the first phase at 600°C for 2 hours to decompose the urea, and the second phase at 1000°C, 1100°C, and 1200°C respectively to sinter the steel. The porosity and density test was carried out by applying Archimedean principles, while morphological observation was done by using Field Emission Scanning Electron (FESEM). The samples with 40wt.% SS316L composition and sintered at temperature of 1100°C, leads to porosities of about 44.539% and show the potential as the best metal foams.


2020 ◽  
Vol 16 (11) ◽  
pp. 155014772097453
Author(s):  
Yuye Zhang ◽  
Ruiyang Pan ◽  
Feng Xiao

This article presents a new protection device using aluminum foam to enhance the impact resistance of bridge columns. First, the protection device is designed according to the characteristics of aluminum foam material. The geometric configuration and structure of the device are described. Second, the impact performance of bridge column is analyzed, including impact force analysis, damage analysis, and the influence of axial load. Third, three-dimensional solid element models of columns with and without the protection device are developed in order to verify the effect of the protection device. By comparing dynamic responses of vehicle impact on columns with and without the protection device, it is considered that the protection device has certain protection effect: after installing the protective device, the peak value of impact force reduces by 37.5%, the maximum displacement of column top reduces by 23.7%, the maximum stress at column bottom reduces by 51.6%, the maximum stress at column bottom reduces by 51.6%, the maximum acceleration of the vehicle reduces by 40.6%, and 86.84% of the impact energy is absorbed by the protection device. Finally, the devices with different foam thicknesses and porosities are comparatively analyzed to investigate the influence of these design parameters on impact performance. The results show that the increase in the thickness of aluminum foam has positive effects on the protection capability. The protection capability improves with aluminum foam porosity increasing when the porosity is less than 60%.


2014 ◽  
Vol 564 ◽  
pp. 376-381 ◽  
Author(s):  
N. Razali ◽  
Mohamed Thariq Hameed Sultan ◽  
S.N.A. Safri ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The aim of this work is to study the effect of thickness and type of bullet in impact test on structures made from a composite material. The composite material used in this study was Glass Fibre Reinforced Polymer (GFRP). This material was fabricated to produce laminated plate specimens with dimension of 100 mm × 100 mm and 6, 8, 10, and 12 mm thickness. The impact test was performed using a Single Stage Gas Gun (SSGG) with blunt, hemispherical, and conical types of bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. In the tests, gas gun pressure, bullet type and specimen thickness were varied to ascertain the influence of these parameters on the materials response. The relation between impact force with gas pressure, type of bullets and specimens thickness are presented and discussed. The best thickness for GFRP was identified according to the impact results. From the impact tests conducted, it was found that at the same amount of pressure, the higher the thickness, the bigger the impact force because as the specimen thickness increases, the amount of impact force absorbed by the specimen is higher.


2017 ◽  
Vol 62 (2) ◽  
pp. 1353-1357
Author(s):  
G.W. Hwang ◽  
J.U. Cho

AbstractAn aluminum foam added with foaming agent, is classified into an open-cell type for heat transfer and a closed-cell type for shock absorption. This study investigates the characteristic on the torsion of aluminum foam for a closed-cell type under impact. The fracture characteristics are investigated through the composite of five types of aluminum foam (the thicknesses of 25, 35, 45, 55 and 65 mm), when applying the torsional moment of impact energy on the junction of a porous structure attached by an adhesive. When applying the impact energy of 100, 200 and 300J, the aluminum foams with thicknesses of 25 mm and 35 mm broke off under all conditions. For the energy over 200J, aluminums thicker than 55 mm continued to be attached. Furthermore, the aluminum specimens with thicknesses of 55 mm and 65 mm that were attached with more than 30% of bonding interface remained, proving that they could maintain bonding interface against impact energy. By comparing the data based on the analysis and test result, an increase in the thickness of specimen leads to the plastic deformation as the stress at the top and bottom of bonding interface moves to the middle by spreading the stress horizontally. Based on this fracture characteristic, this study can provide the data on the destruction and separation of bonding interface and may contribute to the safety design.


2012 ◽  
Vol 602-604 ◽  
pp. 1574-1578
Author(s):  
Norazman Mohamad Nor ◽  
Mohd Azizul Mohd Noor ◽  
Mohammed Alias Yusof ◽  
Ahmad Mujahid Ahmad Zaidi ◽  
Shohaimi Abdullah

In this research we investigate the possibility of enhancing the way brick walls can be retrofitted in an economical manner and become more resistant to blast impact. Retrofitting a method usually done on constructed walls; however, the same strengthening procedures can also be applied to a new construction project. In this research we investigate three methods of reinforcing brick walls against blast impact. First, reinforcing the brick layer using carbon fiber strips only without epoxy, with the fiber being placed on the bare bricks before it is plastered with mortar finishing, second, reinforcing the brick wall by placing CFRP onto the bare bricks and fixing with epoxy prior to finishing or being plastered over with mortar, and third, retrofitting the outer surface of a finished, or plastered, brick wall with CFRP and fixed with epoxy as is commonly done. The impact test was conducted using a drop weight released at a fixed height to simulate blast energy of an explosion. The effects of the test on all the samples were observed to identify failure patterns. Flexural testing was also conducted to observe how the samples perform under normal flexural loading. It was discovered that the second option, i.e. placing the CFRP on the bare bricks and fixing with epoxy before it is finished or plastered over with mortar, performs the best. This is due to the CFRP being firmly fixed before mortar finishing, causing the CFRP to be held steadily in place during the impact, thus, helping the wall to resist the impact load. With the third option, the CFRP was able to resist the impact but, as has been observed in other studies, the CFRP delaminates from the wall. The first option does not work very well since the mortar is unable to perform as well as the epoxy in holding the fiber to the wall to resist the impact force. Thus, for plastered brick walls, it is better suited for it to be reinforced by FRP under the finished mortar rather than on it, thus reducing the problem of delaminated FRP from the wall surface.


2014 ◽  
Vol 566 ◽  
pp. 134-139 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Ryo Okui ◽  
Nagahisa Ogasawara ◽  
Hidetoshi Kobayashi ◽  
Kinya Ogawa

The compressive properties of foamed polyethylene (PE) film with a closed cell for electronic devices have been investigated. A commercial closed cell foamed PE film with a density of 330 kg/m3 was used. Quasi-static testing was carried out at strain rates of 10−3 to 10−1 s−1. The strain rate of the impact test was approximately 105 s−1 by means of split Hopkinson pressure bar method. Within the set of experiments, the compressive stress increased with the strain rate in both the quasi-static and impact test. In particular, the flow stress increased substantially with the increasing strain rate in the impact deformation. At strains of less than 0.4, the trapped air was locally compressed within the cells, which led to the strain rate dependency of strength in the quasi-static test and the impact test.


2018 ◽  
Vol 933 ◽  
pp. 203-208
Author(s):  
Yong Liang Mu ◽  
Ding Ding Wang ◽  
Yong Dong He ◽  
Guang Chun Yao

The impact toughness of closed-cell aluminum foam with various densities was investigated. The impact load history revealed an elastic region followed by a rapid load drop region. The peak load and impact toughness of aluminum foam increases exponentially with density. The power exponents for impact toughness test are greater than that for compressive test. Fracture analysis indicated a mixed-rupture mode of quasi-cleavage and small shallow dimples. It can be attributed to the complex state of stress of notched specimens and elevated impact velocity under impact loading.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Z. X. Yu ◽  
L. Zhao ◽  
L. P. Guo ◽  
Y. P. Liu ◽  
C. Yang ◽  
...  

Rock sheds have been widely used to protect against rockfall. Traditionally, a cushion layer is placed on the top of a rock shed to reduce the impact force and dissipate energy. However, heavy cushion layers lead to high dead loads and increased construction costs. This paper discusses the concept of an impact-resilient flexible buffer structure. On the basis of that concept, it also proposes a buffer structure mainly composed of springs, ring nets, spring rods, and support ropes, which can be used to replace the traditional cushion layer on a shed for rockfall protection. Full-scale impact tests were conducted to study the impact-resilient characteristic of the structure combined with numerical simulation. The dynamic responses of the buffer structure, including force, deformation, and energy dissipation, were analysed in depth. Finally, parametric numerical simulations of 33 models were conducted; the spring stiffness of these models ranged from 300 kN/m to 1500 kN/m; the impact energy ranged from 100 kJ to 2000 kJ. Moreover, simple approaches for estimating the impact force and braking distance of the buffer structure were proposed and verified using measured data obtained from the impact test.


Sign in / Sign up

Export Citation Format

Share Document