scholarly journals The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiahui Zhang ◽  
Jun Zhang ◽  
Nannan Zhang ◽  
Tao Li ◽  
Xiaohe Zhou ◽  
...  

Platelet-rich plasma (PRP) and its byproduct platelet-poor plasma (PPP) are rich sources of cytokines in tissue damage repair. Bone marrow-derived mesenchymal stem cells (BM-MSCs) have received more and more attention for their ability to treat multiple diseases. The purpose of our study was to investigate the biologic action of PPP and PRP on BM-MSCs. The adipogenic potential of BM-MSCs revealed no obvious change, but the osteogenic ability of BM-MSCs was enhanced after treated with PRP. CCK8 assays and cell colony formation assays showed that PRP promoted cell proliferation, while this effect of PPP was not obvious. No obvious difference was found in cell cycle and apoptosis of BM-MSCs between PRP and PPP treatment. Expression of β-galactosidase, a biological marker of senescence, was decreased upon PRP treatment which indicated that PRP provided significant protection against cellular senescence. The migratory capacity of BM-MSCs was detected by scratch and transwell assays. The results indicated that PRP could affect the migration ability of BM-MSCs. From immunofluorescence detection and western blot, we demonstrated that the level of epithelial-mesenchymal transition-related proteins was changed and several pluripotency marker genes, including Sox2, Sall4, Oct4, and Nanog, were increased. Finally, the expression of the key signal pathway such as PI3K/AKT was examined. Our findings suggested that PRP promoted cell migration of BM-MSCs via stimulating the signaling pathway of PI3K/AKT.

Author(s):  
Yi-Chih Tsai ◽  
Su-Liang Chen ◽  
Shu-Ling Peng ◽  
Ya-Li Tsai ◽  
Zuong-Ming Chang ◽  
...  

AbstractKrüppel-like factor 10 (KLF10) is a tumor suppressor in multiple cancers. In a murine model of spontaneous pancreatic adenocarcinoma (PDAC), additional KLF10 depletion accelerated distant metastasis. However, Klf10 knockout mice, which suffer from metabolic disorders, do not develop malignancy. The mechanisms of KLF10 in PDAC progression deserve further exploration. KLF10-depleted and KLF10-overexpressing PDAC cells were established to measure epithelial-mesenchymal transition (EMT), glycolysis, and migration ability. A murine model was established to evaluate the benefit of genetic or pharmacological manipulation in KLF10-depleted PDAC cells (PDACshKLF10). Correlations of KLF10 deficiency with rapid metastasis, elevated EMT, and glycolysis were demonstrated in resected PDAC tissues, in vitro assays, and murine models. We identified sirtuin 6 (SIRT6) as an essential mediator of KLF10 that modulates EMT and glucose homeostasis. Overexpressing SIRT6 reversed the migratory and glycolytic phenotypes of PDACshKLF10 cells. Linoleic acid, a polyunsaturated essential fatty acid, upregulated SIRT6 and prolonged the survival of mice injected with PDACshKLF10. Modulating HIF1α and NFκB revealed that EMT and glycolysis in PDAC cells were coordinately regulated upstream by KLF10/SIRT6 signaling. Our study demonstrated a novel KLF10/SIRT6 pathway that modulated EMT and glycolysis coordinately via NFκB and HIF1α. Activation of KLF10/SIRT6 signaling ameliorated the distant progression of PDAC.Clinical Trial Registration: ClinicalTrials.gov. identifier: NCT01666184.


2021 ◽  
Author(s):  
Mate Vadovics ◽  
Nora Igaz ◽  
Robert Alfoldi ◽  
David Rakk ◽  
Eva Veres ◽  
...  

Oral squamous cell carcinoma (OSCC) is a serious health issue worldwide. OSCC is highly associated with oral candidiasis, although it is unclear whether the fungus promotes the genesis and progression of OSCC or cancer facilitates the growth of the fungus. Therefore, we investigated whether Candida could directly influence OSCC development and progression. Our in vitro results suggest that the presence of live C. albicans, but not C. parapsilosis, enhances the progression of OSCC by stimulating the production of matrix metalloproteinases, oncometabolites, pro-tumor signaling routes, and overexpression of prognostic marker genes associated with metastatic events. We also found that oral candidiasis triggered by C. albicans enhanced the progression of OSCC in vivo through the induction of inflammation and overexpression of metastatic genes and markers of epithelial-mesenchymal transition. Taken together, these results suggest that C. albicans actively participates in the complex process of OSCC progression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li-Na Gao ◽  
Man Hao ◽  
Xiao-Hui Liu ◽  
Li Zhang ◽  
Yan Dong ◽  
...  

Abstract Background There is an urgent need to identify potential targets in anticancer therapy to improve the survival and prognosis of patients with ovarian cancer (OC). Herein, we investigated the functional significance of chemokine (C-X-C motif) ligand 14 (CXCL14) in OC cell growth and epithelial–mesenchymal transition (EMT). Methods qRT PCR and western blotting was used to detect CXCL14 mRNA level and protein expression, respectively. The functional mechanism of CXCL14 in OC was investigated by CCK-8, colony formation and transwell assays. The migration ability of OC cell was determined using wound healing. The protein expressions of CXCL14 and β-catenin in OC tissues were determined by immumohistochemical staining. Results We demonstrated that high levels of CXCL14 were associated with a worse prognosis in patients with OC. CXCL14 knockdown considerably restrained the growth, migration and invasion of OC cell in vitro. In contrast, ectopic CXCL14 overexpression yielded the opposite results. Investigations to determine the underlying molecular mechanisms revealed that the Wnt/β-catenin signaling pathway is involved in CXCL14-facilitated OC cell invasiveness. Conclusion These data collectively demonstrate that CXCL14 contributes to OC cell growth and metastatic potential by regulating the Wnt/β-catenin signaling pathway.


2021 ◽  
Author(s):  
Zijian Ma ◽  
Ganyi Chen ◽  
Yiqian Chen ◽  
Zizhang Guo ◽  
Hao Chai ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) is the majority of NSCLC. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear.Methods: miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tubeformation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vitro experiments were performed on male BALB/c nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA.Result: In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3'-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region.Conclusion: Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, which is a therapeutic target and potential biomarker for LUAD.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yuan-yuan Zhang ◽  
Ying-mei Zhang ◽  
Hai-yan Xu

Objective. To study the effect of Codonopsis pilosula polysaccharide (CPP) on the growth and motility of HepG2 cells and its possible mechanism. Methods. Cells were randomly divided into Control group, CPP (5 μM) group, CPP (10 μM) group, and CPP (20 μM) group. The proliferation, invasion, migration ability, and expression of proteins involved in the epithelial-mesenchymal transition (EMT) and signaling pathway of HepG2 cells were detected by CCK8 assay, BrdU staining, Transwell, Scratch test, and Western blot, respectively. Results. Codonopsis pilosula polysaccharide inhibited the proliferation of HepG2 cells cultured in vitro along with the expression level of Ki67 and PCNA protein (P<0.05), decreased the number of invasive cells (P<0.05), and reduced the scratch closure rate (P<0.05). It also adjusted the expression of vascular endothelial growth factor (VEGF), E-cadherin, and N-cadherin (P<0.05). Other than that, downregulation of β-catenin, TCF4, and c-Myc protein expression (P<0.05) was observed as well. Conclusion. Codonopsis pilosula polysaccharide can inhibit the proliferation and motility of HepG2 cells cultured in vitro, and the underlying mechanism is proposed to be related to the inhibition of the β-catenin/TCF4 pathway.


2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Anqi Xu ◽  
Xizhao Wang ◽  
Jie Luo ◽  
Mingfeng Zhou ◽  
Renhui Yi ◽  
...  

AbstractThe homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan–Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial–mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 965
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Daniela Maria Rasà ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.


Oncogene ◽  
2021 ◽  
Author(s):  
Jinguo Zhang ◽  
Wencai Guan ◽  
Xiaolin Xu ◽  
Fanchen Wang ◽  
Xin Li ◽  
...  

AbstractThe primary chemotherapy of ovarian cancer (OC) often acquires chemoresistance. Sorcin (SRI), a soluble resistance-related calcium-binding protein, has been reported to be an oncogenic protein in cancer. However, the molecular mechanisms of SRI regulation and the role and aberrant expression of SRI in chemoresistant OC remain unclear. Here, we identified SRI as a key driver of paclitaxel (PTX)-resistance and explored its regulatory mechanism. Using transcriptome profiles, qRT-PCR, proteomics, Western blot, immunohistochemistry, and bioinformatics analyses, we found that SRI was overexpressed in PTX-resistant OC cells and the overexpression of SRI was related to the poor prognosis of patients. SRI was a key molecule required for growth, migration, and PTX-resistance in vitro and in vivo and was involved in epithelial–mesenchymal transition (EMT) and stemness. Mechanistic studies showed that miR-142-5p directly bound to the 3ʹ-UTR of SRI to suppress its expression, whereas a transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) inhibited the transcription of miR-142-5p by directly binding to the E-box fragment in the miR-142 promoter region. Furthermore, ZEB1 was negatively regulated by SRI which physically interacted with Smad4 to block its translocation from the cytosol to the nucleus. Taken together, our findings unveil a novel homeostatic loop of SRI that drives the PTX-resistance and malignant progression via Smad4/ZEB1/miR-142-5p in human OC. Targeting this SRI/Smad4/ZEB1/miR-142-5p loop may reverse the PTX-resistance.


Sign in / Sign up

Export Citation Format

Share Document