scholarly journals PACR: Position-Aware Protocol for Connectivity Restoration in Mobile Sensor Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rab Nawaz Jadoon ◽  
Adnan Anwar Awan ◽  
Muhammad Amir Khan ◽  
WuYang Zhou ◽  
Aqdas Naveed Malik

Wireless Sensor Networks (WSNs) have gained global attention in recent times due to their vast applications in various fields. These networks can face the disruption of data transmission due to sensor node failures when placed in harsh, inaccessible, and adverse environments such as battlefields or monitoring in enemy territory. The specific tasks performed by the collaboration among the sensor nodes in WSNs by internode connectivity may be terminated. Besides this, due to the failure of sensor nodes, the area covered by the network may be limited, which can cause damage to the objectives for such a network, as there might be an unaware danger in the lost area. Connectivity is a big problem in mobile WSNs due to the mobility of nodes. Researchers have developed a lot of algorithms that are capable enough for connectivity problems, but they do not emphasize the loss of coverage. We try to fill these gaps by proposing the new hybrid algorithm PACR (Position-Aware protocol for Connectivity Restoration). The concept behind PACR is the same as a person who writes his will before death on a deathbed. In the same way, when the sensor energy is below the threshold, it is converted into a recovery coordinator and generates a recovery plan. This accelerates the recovery by decreasing the time needed for failure identification. For the recovery process, the neighbor’s nodes do not travel to the exact position of the failed node. Instead, they just move to the distance where they can build communication links with other nodes. This greatly prolongs the network lifetime. The simulation results show that PACR outperforms other techniques present in the literature.

2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Khalid Mahmood ◽  
Muhammad Amir Khan ◽  
Mahmood ul Hassan ◽  
Ansar Munir Shah ◽  
Shahzad Ali ◽  
...  

Wireless sensor networks are envisioned to play a very important role in the Internet of Things in near future and therefore the challenges associated with wireless sensor networks have attracted researchers from all around the globe. A common issue which is well studied is how to restore network connectivity in case of failure of single or multiple nodes. Energy being a scarce resource in sensor networks drives all the proposed solutions to connectivity restoration to be energy efficient. In this paper we introduce an intelligent on-demand connectivity restoration technique for wireless sensor networks to address the connectivity restoration problem, where nodes utilize their transmission range to ensure the connectivity and the replacement of failed nodes with their redundant nodes. The proposed technique helps us to keep track of system topology and can respond to node failures effectively. Thus our system can better handle the issue of node failure by introducing less overhead on sensor node, more efficient energy utilization, better coverage, and connectivity without moving the sensor nodes.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Sensor nodes are exceedingly energy compelled instrument, since it is battery operated instruments. In wsn network, every node is liable to the data transmission through the wireless mode [1]. Wireless sensor networks (WSN) is made of a huge no. of small nodes with confined functionality. The essential theme of the wireless sensor network is energy helpless and the WSN is collection of sensor. Every sensor terminal is liable to sensing, store and information clan and send it forwards into sink. The communication within the node is done via wireless network [3].Energy efficiency is the main concentration of a desining the better routing protocol. LEACH is a protocol. This is appropriate for short range network, since imagine that whole sensor node is capable of communication with inter alia and efficient to access sink node, which is not always correct for a big network. Hence, coverage is a problem which we attempt to resolve [6]. The main focus within wireless sensor networks is to increase the network life-time span as much as possible, so that resources can be utilizes efficiently and optimally. Various approaches which are based on the clustering are very much optimal in functionality. Life-time of the network is always connected with sensor node’s energy implemented at distant regions for stable and defect bearable observation [10].


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Amir Khan ◽  
Halabi Hasbullah ◽  
Babar Nazir ◽  
Imran Ali Khan

Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Kiani

Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase), the sensors are placed into virtual layers. The second phase (data transmission) is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Qinghai Gao ◽  
Junshan Zhang ◽  
Xuemin (Sherman) Shen ◽  
Bryan Larish

We take a cross-layer optimization approach to study energy efficient data transport in coalition-based wireless sensor networks, where neighboring nodes are organized into groups to form coalitions and sensor nodes within one coalition carry out cooperative communications. In particular, we investigate two network models: (1) many-to-one sensor networks where data from one coalition are transmitted to the sink directly, and (2) multihop sensor networks where data are transported by intermediate nodes to reach the sink. For the many-to-one network model, we propose three schemes for data transmission from a coalition to the sink. In scheme 1, one node in the coalition is selected randomly to transmit the data; in scheme 2, the node with the best channel condition in the coalition transmits the data; and in scheme 3, all the nodes in the coalition transmit in a cooperative manner. Next, we investigate energy balancing with cooperative data transport in multihop sensor networks. Built on the above coalition-aided data transmission schemes, the optimal coalition planning is then carried out in multihop networks, in the sense that unequal coalition sizes are applied to minimize the difference of energy consumption among sensor nodes. Numerical analysis reveals that energy efficiency can be improved significantly by the coalition-aided transmission schemes, and that energy balancing across the sensor nodes can be achieved with the proposed coalition structures.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Walaa M. El-Sayed ◽  
Hazem M. El-Bakry ◽  
Salah M. El-Sayed

Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors (motes), which typically consume high energy in radio communication that mainly leans on data transmission within the network. Furthermore, dissemination mode in WSN usually produces noisy values, incorrect measurements or missing information that affect the behaviour of WSN. In this article, a Distributed Data Predictive Model (DDPM) was proposed to extend the network lifetime by decreasing the consumption in the energy of sensor nodes. It was built upon a distributive clustering model for predicting dissemination-faults in WSN. The proposed model was developed using Recursive least squares (RLS) adaptive filter integrated with a Finite Impulse Response (FIR) filter, for removing unwanted reflections and noise accompanying of the transferred signals among the sensors, aiming to minimize the size of transferred data for providing energy efficient. The experimental results demonstrated that DDPM reduced the rate of data transmission to ∼20%. Also, it decreased the energy consumption to 95% throughout the dataset sample and upgraded the performance of the sensory network by about 19.5%. Thus, it prolonged the lifetime of the network.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6418
Author(s):  
Vahid Khalilpour Akram ◽  
Zuleyha Akusta Dagdeviren ◽  
Orhan Dagdeviren ◽  
Moharram Challenger

A Wireless Sensor Network (WSN) is connected if a communication path exists among each pair of sensor nodes (motes). Maintaining reliable connectivity in WSNs is a complicated task, since any failure in the nodes can cause the data transmission paths to break. In a k-connected WSN, the connectivity survives after failure in any k-1 nodes; hence, preserving the k-connectivity ensures that the WSN can permit k-1 node failures without wasting the connectivity. Higher k values will increase the reliability of a WSN against node failures. We propose a simple and efficient algorithm (PINC) to accomplish movement-based k-connectivity restoration that divides the nodes into the critical, which are the nodes whose failure reduces k, and non-critical groups. The PINC algorithm pickups and moves the non-critical nodes when a critical node stops working. This algorithm moves a non-critical node with minimum movement cost to the position of the failed mote. The measurements obtained from the testbed of real IRIS motes and Kobuki robots, along with extensive simulations, revealed that the PINC restores the k-connectivity by generating optimum movements faster than its competitors.


Sign in / Sign up

Export Citation Format

Share Document