scholarly journals Effects of Mating and Social Exposure on Cell Proliferation in the Adult Male Prairie Vole (Microtus ochrogaster)

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
A. E. Castro ◽  
L. J. Young ◽  
F. J. Camacho ◽  
R. G. Paredes ◽  
N. F. Diaz ◽  
...  

Microtus ochrogaster is a rodent with a monogamous reproductive strategy characterized by strong pair bond formation after 6 h of mating. Here, we determine whether mating-induced pair bonding increases cell proliferation in the subventricular zone (SVZ), rostral migratory stream (RMS), and dentate gyrus (DG) of the hippocampus in male voles. Males were assigned to one of the four groups: (1) control: males were placed alone in a clean cage; (2) social exposure to a female (SE m/f): males that could see, hear, and smell a sexually receptive female but where physical contact was not possible, because the animals were separated by an acrylic screen with small holes; (3) social exposure to a male (SE m/m): same as group 2 but males were exposed to another male without physical contact; and (4) social cohabitation with mating (SCM): males that mated freely with a receptive female for 6 h. This procedure leads to pair bond formation. Groups 2 and 3 were controls for social interaction. Male prairie voles were injected with 5-bromo-2′-deoxyuridine (BrdU) during the behavioral tests and were sacrificed 48 h later. Brains were processed to identify the new cells (BrdU-positive) and neuron precursor cells (neuroblasts). Our principal findings are that in the dorsal region of the SVZ, SCM and SE m/f and m/m increase the percentage of neuron precursor cells. In the anterior region of the RMS, SE m/f decreases the percentage of neuron precursor cells, and in the medial region SE m/f and m/m decrease the number of new cells and neuron precursor cells. In the infrapyramidal blade of the subgranular zone of the DG, SE m/m and SCM increase the number of new neuron precursor cells and SE m/m increases the percentage of these neurons. Our data suggests that social interaction, as well as sexual stimulation, leads to pair bonding in male voles modulating cell proliferation and differentiation to neuronal precursor cells at the SVZ, RMS, and DG.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joel A. Tripp ◽  
Alejandro Berrio ◽  
Lisa A. McGraw ◽  
Mikhail V. Matz ◽  
Jamie K. Davis ◽  
...  

Abstract Background Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. Results We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. Conclusions These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


Behaviour ◽  
1970 ◽  
Vol 37 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
J.A. Valone

Abstract1. The relation between the social behavior and the electrical emissions of Gymnotus carapo is examined. 2. Members of the species Gymnotus carapo approach certain sources of electrical stimuli and, in a statistically significant number of instances, assume a stance parallel to the plane from which the stimuli originate. 3. The approach and postural responses elicited by electrical cues resemble those observed when two fish, placed in the same tank, interact socially. 4. Electrical cues therefore appear to facilitate certain social interactions in Gymnotus carapo. 5. The character of electrical emission in Gymnotus carapo appears to change as a function of certain social interaction: a. Interaction resembling aggression is accompanied by brief increases in the frequency of emission. b. The increases in frequency appear to be linked to thrusting movements. c. Fish interacting with one another appear to lock into a common frequency more often than fish that are not in physical contact with one another. d. During social interaction, one of the two fish is occasionally observed to halt emissions altogether. 6. The exact significance of the social behavior observed in the context of the life history of Gymnotus carapo is unknown.


2020 ◽  
Author(s):  
Megan Kiely Mueller ◽  
Eric C Anderson ◽  
Erin K. King ◽  
Heather L. Urry

Animal-assisted interventions (AAIs) are increasingly popular as treatments to reduce anxiety. However, there is little empirical evidence testing the mechanisms of action in AAIs, especially among adolescents. We examined whether two possible mechanisms, social interaction and/or physical contact with a therapy dog, might reduce anxiety during a social stressor. To test these mechanisms, we randomly assigned 75 adolescents with low, middle, and high levels of social anxiety to complete a laboratory-based social evaluative stressor in one of three conditions: social interaction with a therapy dog (no physical interaction), social plus physical interaction with a therapy dog, or no interaction with a therapy dog. We found no evidence that the presence of a real dog, with or without the opportunity to touch it, reduced anxiety or autonomic reactivity or improved cognitive performance relative to the presence of a stuffed dog in the control condition, regardless of levels of preexisting social anxiety.


2008 ◽  
Vol 28 (24) ◽  
pp. 7427-7441 ◽  
Author(s):  
Takeshi Shimizu ◽  
Tetsushi Kagawa ◽  
Toshihiro Inoue ◽  
Aya Nonaka ◽  
Shinji Takada ◽  
...  

ABSTRACT The proliferation and differentiation of neural precursor cells are mutually exclusive during brain development. Despite its importance for precursor cell self renewal, the molecular linkage between these two events has remained unclear. Fibroblast growth factor 2 (FGF2) promotes neural precursor cell proliferation and concurrently inhibits their differentiation, suggesting a cross talk between proliferation and differentiation signaling pathways downstream of the FGF receptor. We demonstrate that FGF2 signaling through phosphatidylinositol 3 kinase activation inactivates glycogen synthase kinase 3β (GSK3β) and leads to the accumulation of β-catenin in a manner different from that in the Wnt canonical pathway. The nuclear accumulated β-catenin leads to cell proliferation by activating LEF/TCF transcription factors and concurrently inhibits neuronal differentiation by potentiating the Notch1-RBP-Jκ signaling pathway. β-Catenin and the Notch1 intracellular domain form a molecular complex with the promoter region of the antineurogenic hes1 gene, allowing its expression. This signaling interplay is especially essential for neural stem cell maintenance, since the misexpression of dominant-active GSK3β completely inhibits the self renewal of neurosphere-forming stem cells and prompts their neuronal differentiation. Thus, the GSK3β/β-catenin signaling axis regulated by FGF and Wnt signals plays a pivotal role in the maintenance of neural stem/precursor cells by linking the cell proliferation to the inhibition of differentiation.


2001 ◽  
Vol 21 (18) ◽  
pp. 7392-7396 ◽  
Author(s):  
Lauren J. Pitkow ◽  
Catherine A. Sharer ◽  
Xianglin Ren ◽  
Thomas R. Insel ◽  
Ernest F. Terwilliger ◽  
...  

Behaviour ◽  
2004 ◽  
Vol 141 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Geoffrey Hill ◽  
Kevin McGraw

AbstractIn seasonally breeding birds, natural selection favors individuals that begin breeding earlier in a year because they produce more or higher quality offspring than those that begin breeding later. Among the factors that influence the timing of breeding, which include the age, health, competitive ability, or mate quality of individuals, is the longevity of the pair bond, with birds that remain mated across years initiating breeding earlier in the season than newly formed pairs. The behavioural interactions between pair members that may facilitate long-term pair bonding and early breeding onset have infrequently been studied, however. Here we report the relationship between male-female affiliative behaviour, pair-bond duration, and breeding date in house finches (Carpodacus mexicanus), a short-lived, socially monogamous passerine species in which the duration of pair bonds is highly variable within and among seasons. Finches that initiated breeding earliest in the season were those that had bred with one another in previous years. Early breeding males from returning pairs maintained significantly closer contact with their mate during the first egg-laying period of the year than did males from late-breeding, newly formed pairs. Similarly, early-breeding females from returning pairs followed their mate more closely in nest-vicinity flights during the fertile period than females from late-breeding, newly formed pairs. These results suggest that attributes of and interactions between both pair members may help to maintain stable breeding pairs and influence the timing of breeding in seasonally nesting, short-lived songbirds. Rather than advertising for or seeking extra-pair fertilization opportunities, high-quality pairs of finches may invest heavily in their mate to secure the pair bond and ensure high intrapair reproductive success.


2017 ◽  
Vol 28 (1) ◽  
pp. 86-99 ◽  
Author(s):  
CHRISTINE J. GROOM ◽  
KRISTIN WARREN ◽  
PETER R. MAWSON

SummaryRelease into the wild is the preferred outcome for rehabilitated animals, but often little is known about what happens to individuals following their release. Increased knowledge of post-release survival and reintegration into the wild could improve release and rehabilitation strategies. To assess the survival and reintegration of rehabilitated Endangered Carnaby’s Cockatoos Zanda latirostris into wild flocks we studied the movements and behaviour of 23 birds fitted with satellite tracking devices. We assessed longer term survival by collating records of leg-banded birds over eight years. Rehabilitated birds had an estimated annual survival rate of 0.73. The band recovery rate for all rehabilitated Carnaby’s Cockatoos banded between 2005 and 2013 was not significantly different to those fitted with tracking devices (10.3% versus 13.0% respectively, P = 1). Physical, social and behavioural indicators of fitness were used to assess the success of the reintegration of rehabilitated birds. Released birds flew, roosted and foraged with wild birds. Whilst pair bond formation and breeding of study birds could not be confirmed during this study, behaviours associated with pair bonding were observed, including allo-preening and male courtship displays. The rehabilitation process and pre-release procedure for identifying individuals ready for release was effective at selecting suitable release candidates.


Sign in / Sign up

Export Citation Format

Share Document