scholarly journals AEBP1 Promotes Glioblastoma Progression and Activates the Classical NF-κB Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kai Guo ◽  
Lei Song ◽  
Jianyong Chang ◽  
Peicheng Cao ◽  
Qi Liu

Objective. Our study was aimed at investigating the mechanistic consequences of the upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in glioblastoma (GBM). Methods. The expression of AEBP1 in GBM was assessed by bioinformatics analysis and qRT-PCR; the effects of AEBP1 on GBM cell proliferation, migration, invasion, and tumor growth in vitro and in vivo were detected by a CCK-8 assay, colony formation assay, scratch assay, Transwell assay, and subcutaneous tumor formation, respectively. The activation of related signaling pathways was monitored using western blot. Results. Tumor-related databases and bioinformatics analysis revealed that AEBP1 was highly expressed in GBM and indicated poor outcome of patients; its high expression that was also confirmed in GBM tissues and cell lines was closely related to the tumor size. The results of in vitro experiments showed that AEBP1 could significantly promote GBM cell proliferation, migration, and invasion; in vivo experiments suggested that AEBP1 could contribute to the growth of GBM tumors. AEBP1 could upregulate the level of IκBα phosphorylation, decrease IκBα expression, activate the NF-κB signaling pathway, and promote the expression of downstream oncogenes. Conclusion. Upregulated AEBP1 in GBM promotes GBM cell proliferation, migration, and invasion and facilitates tumor growth in vivo by activating the classical NF-κB pathway.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Fan ◽  
Hai Li ◽  
Yun Zhang

Abstract Background Accumulating evidence has associated aberrant long non-coding RNAs (lncRNAs) with various human cancers. This study aimed to explore the role of LINC00908 in prostate cancer (PCa) and its possible underlying mechanisms. Methods Microarray data associated with PCa were obtained from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes or lncRNAs. Then, the expression of LINC00908 in PCa tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The localization of LINC00908 in PCa cells was examined by fluorescence in situ hybridization (FISH). The relationship among LINC00908, microRNA (miR)-483-5p, and TSPYL5 was detected by bioinformatics analysis, dual-luciferase reporter assay, RNA pull-down, RNA binding protein immunoprecipitation (RIP), and FISH assays. Cell biological behaviors were assessed after the expression of LINC00908, miR-483-5p, and TSPYL5 was altered in PCa cells. Lastly, tumor growth in nude mice was evaluated. Results Poorly expressed LINC00908 was witnessed in PCa tissues and cells. LINC00908 competitively bound to miR-483-5p to up-regulate the TSPYL5 expression. Overexpression of LINC00908 resulted in reduced PCa cell proliferation, migration and invasion, and promoted apoptosis. Additionally, the suppression on PCa cell proliferation, migration and invasion was induced by up-regulation of TSPYL5 or inhibition of miR-483-5p. In addition, in vivo experiments showed that overexpression of LINC00908 inhibited tumor growth of PCa. Conclusion Overall, LINC00908 could competitively bind to miR-483-5p to increase the expression of TSPYL5, thereby inhibiting the progression of PCa. Therefore, LINC00908 may serve as a novel target for the treatment of PCa.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


BMC Cancer ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Mélissa Labelle-Côté ◽  
Julie Dusseault ◽  
Salma Ismaïl ◽  
Aude Picard-Cloutier ◽  
Peter M Siegel ◽  
...  

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769167 ◽  
Author(s):  
Yiting Zhang ◽  
Xinyue Zhu ◽  
Xiaomin Zhu ◽  
Yan Wu ◽  
Yajun Liu ◽  
...  

Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3′-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.


2020 ◽  
Author(s):  
Xiaoxi Fan ◽  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Dengke Zhang ◽  
Fazong Wu ◽  
...  

Abstract Background: Accumulating evidences has been reported that long noncoding RNAs play crucial roles in the progression of hepatocellular carcinoma (HCC). SnoRNA host gene 6 (SNHG6) is believed to be involved in several human cancers, but the specific molecular mechanism of SNHG6 in HCC is not well studied. Methods: In this study, we experimentally down-regulated the SNHG6 in two hepatocellular carcinoma cell lines, and measured the proliferation, migration and invasion abilities and the apoptotic levels in vitro. Also, we performed the xenograft assay to investigate the function of SNHG6 during the tumor growth. Results: We found SNHG6 was highly expressed in HCC tissues. Next, using Hep3B and Huh7 cells, we confirmed knockdown of SNHG6 could reduce the proliferation, migration and invasion abilities in vitro. Also, by bioinformatics analysis, further molecular and cellular experiments, we found miR-6509-5p bound to SNHG6 directly, and the expression level of HIF1A was regulated through SNHG6/miR-6509-5p axis. Finally, we found that down-regulation of SNHG6 could dramatically reduce the tumor growth ability of Huh7 cells in vivo . Conclusions: We concluded that SNHG6/miR-6509-5p/ HIF1A axis functioned in the progression of hepatocellular carcinoma, and could be the promising therapeutic targets in hepatocellular carcinoma.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5875
Author(s):  
Patrice Cagle ◽  
Nikia Smith ◽  
Timothy O. Adekoya ◽  
Yahui Li ◽  
Susy Kim ◽  
...  

Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.


2021 ◽  
Author(s):  
Ji-Ping Hou ◽  
Xue-Bo Men ◽  
Lian-Ying Yang ◽  
En-Kun Han ◽  
Chun-Qi Han ◽  
...  

Abstract Objective This study was aimed at investigating the involvement of CircCCT3 in PC and study its interactions and functioning during the PC progression in vitro and in vivo by the use of molecular biology and bioinformatic methods.Methods The expressions of CircCCT3 and miR-613 in pancreatic carcinoma tissues and cell lines were evaluated by quantitative realtime PCR .The relationship between clinical pathologic features as well as survival rate and CircCCT3 expression was analyzed with Chi-square test and Kaplan–Meier method. CCK-8, wound healing , transwell assays and FITC-AnnexinV/PI assay were used to assess cell proliferation, migration, invasion and apoptosis after CircCCT3 overexpression or downregulation. Dual-Luciferase reporterassay, RNA immunoprecipitation (RIP) ,RNA pull down and fluorescence in situ hybridization(FISH) assays were performed to validate the potential interaction of CircCCT3, miR-613 and VEGFA.Nude mouse xenograft tumor assay was used to detect CircCCT3 effects on pancreatic tumorigenesis in vivo.Western blotting analysis was performed to examine the VEGFA and VEGFR2 protein expressions following.Results CircCCT3 expression was significantly increased in PC tissues and cell lines. CircCCT3 expression was negatively correlated with miR-613 expression. Moreover, it was found that CircCCT3 promote cell proliferation, migration, invasion and inhibited cell apoptosis in PC cells. CircCCT3 acted as a sponge for miR-613 to facilitate VEGFA and VEGFR2 expression. si-CirCCT3also inhibited tumor growth of PC in nude mice.si-CircCCT3 reduced VEGFA and VEGFR2 expression, whereas overexpression of CircCCT3 increased VEGFA and VEGFR2 expression.Conclusions Increased CircCCT3 suggests a poor prognosis in PC patients and promotes the migration and invasion through targeting VEGFA/VEGFR2 signaling. CircCCT3 may serve as a potential and promising therapeutic target for PC treatment.


Author(s):  
Ming Zhang ◽  
Baochang Shi ◽  
Kai Zhang

Deregulation of miR-186 and Twist1 has been identified to be involved in the progression of multiple cancers. However, the detailed molecular mechanisms underlying miR-186-involved cholangiocarcinoma (CCA) are still unknown. In this study, we found that miR-186 was downregulated in CCA tissues and cell lines, and negatively correlated with the expression of Twist1 protein. In vitro assays demonstrated that miR-186 mimics repressed cell proliferation, in vivo tumor formation, and caused cell cycle arrest. miR-186 mimics also inhibited the migration and invasion of CCLP1 and SG-231 cells. Mechanistically, the 3′-untranslated region (3′-UTR) of Twist1 mRNA is a direct target of miR-186. Further, miR-186 inhibited the expressions of Twist1, N-cadherin, vimentin, and matrix metallopeptidase 9 (MMP9) proteins, whereas it increased the expression of E-cadherin in CCLP1 and SG-231 cells. Silencing of Twist1 expression enhanced the inhibitory effects of miR-186 on the proliferation, migration, and invasion of CCLP1 and SG-231 cells. In conclusion, miR-186 inhibited cell proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) through targeting Twist1 in human CCA. Thus, miR-186/Twist1 axis may benefit the development of therapies for CCA.


Sign in / Sign up

Export Citation Format

Share Document