scholarly journals The Effect of Sodium Gluconate on Pastes’ Performance and Hydration Behavior of Ordinary Portland Cement

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xingdong Lv ◽  
Jiazheng Li ◽  
Chao Lu ◽  
Zhanao Liu ◽  
Yaosheng Tan ◽  
...  

The goal of this paper provides better understanding of the effect of sodium gluconate (SG) on ordinary Portland cement (OPC) hydration behavior. Pastes’ performances of ordinary Portland cement, including setting time at 20°C and 35°C curing temperature, mechanical strength, fluidity, and zeta potential are studied. Furthermore, the effects of SG on cement hydration behaviors are investigated by the means of isothermal calorimetry measurements, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that SG is difficult to maintain significant retarding effect at the temperature of 35°C compared to that at the temperature of 20°C. SG is able to reduce the cement cumulative hydration heat and delay the occurrence time of heat evolution peak in a certain extent, but it has little impact on reducing the cement evolution rate peak. The effects of SG on mechanical properties and dispersion properties of cement depend on its dosages. Specifically, the positive effect occurs when the addition dosage is less than 0.15% (i.e., by cement weight), but the negative effect emerges if the addition dosages exceed this limitation. Similarly, SG plays different roles on cement hydration at different hydration periods. It inhibits the hydration of C3S and the formation of portlandite (CH) at the early hydration period. On the contrary, it promotes the C3S hydration when hydration time is beyond 1 d. Meanwhile, SG also plays different roles on cement hydration at different dosage additions. Specifically, SG promotes ettringite (AFt) formation at the dosage less than 0.06%, but it inhibits AFt formation at the dosage more than 0.06%.

Holzforschung ◽  
1999 ◽  
Vol 53 (1) ◽  
pp. 104-108 ◽  
Author(s):  
N. Sauvat ◽  
R. Sell ◽  
E. Mougel ◽  
A. Zoulalian

Summary As an essential preliminary to understand the hydration of wood-cement composites, the effects of some additives on the delayed setting due to wood of an Ordinary Portland Cement have been investigated by isothermal calorimetry. With the addition of calcium chloride and activated charcoal, an increase of 50% of the total enthalpy is observed in wood-cement composites hydration, because calcium chloride mostly influences aluminate phases and activated charcoal silicate phases.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7011
Author(s):  
Małgorzata Gołaszewska ◽  
Barbara Klemczak ◽  
Jacek Gołaszewski

This paper presents the results of research into the heat of hydration and activation energy of calcium sulphoaluminate (CSA) cement in terms of the dependence on curing temperature and water/cement ratio. Cement pastes with water/cement ratios in the range of 0.3–0.6 were tested by isothermal calorimetry at 20 °C, 35 °C and 50 °C, with the evolved hydration heat and its rate monitored for 168 h from mixing water with cement. Reference pastes with ordinary Portland cement (OPC) were also tested in the same range. The apparent activation energy of CSA and OPC was determined based on the results of the measurements. CSA pastes exhibited complex thermal behaviour that differed significantly from the thermal behaviour of ordinary Portland cement. The results show that both the w/c ratio and elevated temperature have a meaningful effect on the heat emission and the hydration process of CSA cement pastes. The determined apparent activation energy of CSA revealed its substantial variability and dependence, both on the w/c ratio and the curing temperature.


2018 ◽  
Vol 760 ◽  
pp. 43-48
Author(s):  
Martin Keppert

Lead is an example of heavy metal, which influences the course of silicate cement hydration resulting to retardation of setting and hardening. This topic become of importance when a cementitious material is intended to be used as solidification/stabilization matrix for a waste or secondary product containing some lead species. There are literature data on the effect of Pb retarding action but they are incomparable each other due to uneven experimental conditions, used Pb salts, types of cement etc. The present paper aims to describe influence of various lead(II) compounds (nitrate, sulfate and lead(II) oxide) on setting course of Ordinary Portland cement (OPC). The setting was monitored by Vicat apparatus, the dosage of salts (expressed as wt. % of elementary Pb to OPC) was 0.5, 1, 2 and 5%. Obviously the present anions may also influence the setting time; the set of control experiments with sodium salts of above given anions was performed in order to eliminate the anion effect. The PbO was found to be most detrimental towards retarding of setting, while lead sulfate at higher dosages caused high instability of setting (oscillation). The effect of Pb was, in all cases, more important than influence of given anion.


2018 ◽  
Vol 163 ◽  
pp. 04002
Author(s):  
Justyna Zapała-Sławeta ◽  
Zdzisława Owsiak

The effectiveness of lithium nitrate as a chemical additive which reduces the negative effects of alkali aggregate reaction was subject to research by scientists in many centres around the world. The literature data on the impact of lithium nitrate on the physical and mechanical properties of cements are rare. Without a precise definition of the impact of lithium nitrate on the cement properties, it is extremely hard to determine its real advantages in practical usage. In this paper, studies were undertaken to assess the impact of LiNO3 on the properties of pastes and mortars with Portland cement. The rate of hydration of the cement with lithium additive was examined by isothermal calorimetry, measurements of setting time and phase composition of cement pastes in the initial stages of hydration. The influence of the admixture on the compressive strength development of mortars after 2, 7 and 28 days of hardening was also researched. Results indicate that lithium nitrate accelerates the early hydration of Portland cement, affecting the precipitation of hydration products. The compressive strength of mortars with lithium admixture decrease after 28 days, although 2 an 7-day strength were greater than the control mortars.


2021 ◽  
Vol 10 (1) ◽  
pp. 768-778
Author(s):  
Shaoqiang Meng ◽  
Xiaowei Ouyang ◽  
Jiyang Fu ◽  
Yanfei Niu ◽  
Yuwei Ma

Abstract Graphene (G) and graphene oxide (GO) have been shown to significantly improve the mechanical properties of cement-based materials. In this study, the effect of the G/GO on cement hydration was investigated. First, the zeta potential of G/GO in simulated solutions was tested, and the interaction between G/GO’s surface and Ca2+ was explored. Subsequently, scanning electron microscopy was used to observe the morphology of C–S–H nucleation and growth on the cement surface in the cement paste containing G/GO. Furthermore, XRD and TGA analyses were carried out on the hydration products of the sample. At last, isothermal calorimetry was applied to investigate the influence of G/GO on the early hydration of cement. The results showed that the addition of G/GO significantly accelerates C–S–H nucleation and growth on the cement surface. It is indicated that the high mobility ions derived by G/GO in the cement paste dominate the reason for the accelerated hydration of cement. The presence of G, especially GO, facilitates the mobility of ions, especially Ca2+, thus enhances the interaction between the cement surface and the ions. This strong interaction promotes the C–S–H nucleation and growth, and therefore, the hydration of the cement.


2016 ◽  
Vol 851 ◽  
pp. 51-56 ◽  
Author(s):  
Martin Boháč ◽  
Radoslav Novotný ◽  
Jakub Tkacz ◽  
Miroslava Hajdúchová ◽  
Martin Palou ◽  
...  

The role of temperature of metakaolin/Portland cement binary system was studied by isothermal calorimetry. Sample with 50 % of metakaolin replacement were monitored at 30 °C, 40 °C, 50 °C and 60 °C. Structural and chemical characterization of hardened pastes was obtained by scanning electron and Raman microscopy. Paper deals with kinetics of main exothermal reactions during early hydration of the system. Activation energies were calculated for processes related to each exothermic peak. The nature of hydration products at different temperatures was revealed by microstructural studies.


2019 ◽  
Vol 803 ◽  
pp. 284-288
Author(s):  
José da Silva Andrade Neto ◽  
Tiago Assunção Santos ◽  
Raphael Dias Mariano ◽  
Marcio Raymundo Morelli ◽  
Daniel Véras Ribeiro

This paper evaluates the effect of grinding dust (GD), a waste generated in the clutch disc finishing process, on Portland cement hydration. For this, pastes with additions of 5%, 10% and 15% GD, relative to cement weight, were molded and compared with a reference sample. Tests of setting time determination by Vicat needle, calorimetry, monitoring the ultrasonic pulse propagation velocity and mineralogical analysis (X-ray diffraction) in pastes with 1 day of hydration were carried out. It was observed that GD, due to the presence of copper, zinc and phenolic resin in its composition, is responsible for retarding cement hydration and thus increases the setting time and delays the evolution of heat release and pulse propagation velocity. However, the formation of new crystalline phases was not observed.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4999
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Yuko Ogawa

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.


Sign in / Sign up

Export Citation Format

Share Document