scholarly journals Ral GEF with the PH Domain and SH3 Binding Motif 1 Regulated by Splicing Factor Junction Plakoglobin and Pyrimidine Metabolism Are Prognostic in Uterine Carcinosarcoma

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongjun Guo ◽  
Siqiao Wang ◽  
Aiqing Xie ◽  
Wenhuizi Sun ◽  
Chenlu Wei ◽  
...  

Uterine carcinosarcoma (UCS) is a highly invasive malignant tumor that originated from the uterine epithelium. Many studies suggested that the abnormal changes of alternative splicing (AS) of pre-mRNA are related to the occurrence and metastasis of the tumor. This study investigates the mechanism of alternative splicing events (ASEs) in the tumorigenesis and metastasis of UCS. RNA-seq of UCS samples and alternative splicing event (ASE) data of UCS samples were downloaded from The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases, several times. Firstly, we performed the Cox regression analysis to identify the overall survival-related alternative splicing events (OSRASEs). Secondly, a multivariate model was applied to approach the prognostic values of the risk score. Afterwards, a coexpressed network between splicing factors (SFs) and OSRASEs was constructed. In order to explore the relationship between the potential prognostic signaling pathways and OSRASEs, we fabricated a network between these pathways and OSRASEs. Finally, validations from multidimension platforms were used to explain the results unambiguously. 1,040 OSRASEs were identified by Cox regression. Then, 6 OSRASEs were incorporated in a multivariable model by Lasso regression. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve was 0.957. The risk score rendered from the multivariate model was corroborated to be an independent prognostic factor ( P < 0.001 ). In the network of SFs and ASEs, junction plakoglobin (JUP) noteworthily regulated RALGPS1-87608-AT ( P < 0.001 , R = 0.455 ). Additionally, RALGPS1-87608-AT ( P = 0.006 ) showed a prominent relationship with distant metastasis. KEGG pathways related to prognosis of UCS were selected by gene set variation analysis (GSVA). The pyrimidine metabolism ( P < 0.001 , R = − 0.470 ) was the key pathway coexpressed with RALGPS1. We considered that aberrant JUP significantly regulated RALGPS1-87608-AT and the pyrimidine metabolism pathway might play a significant part in the metastasis and prognosis of UCS.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi108-vi108
Author(s):  
Rui-Chao Chai ◽  
tao jiang ◽  
Yong-Zhi Wang

Abstract Aberrant expression of RNA processing genes may drive the alterative RNA profile in lower-grade gliomas (LGGs). Thus, we aimed to further stratify LGGs based on the expression of RNA processing genes. This study included 446 LGGs from The Cancer Genome Atlas (TCGA, training set) and 171 LGGs from the Chinese Glioma Genome Atlas (CGGA, validation set). The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was conducted to develop a risk-signature. The ROC curves and Kaplan–Meier curves were used to study the prognosis value of the risk-signature. Among the tested 784 RNA processing genes, 276 were significantly correlated with the OS of LGGs. Further LASSO Cox regression identified a 19-gene risk-signature, whose risk score was also an independently prognosis factor (P< 0.0001, multiplex Cox regression) in the validation dataset. The signature had better prognostic value than the traditional factors “age”, “grade” and “WHO 2016 classification” for 3‐ and 5‐year survival both two datasets (AUCs > 85%). Importantly, the risk-signature could further stratify the survival of LGGs in specific subgroups of WHO 2016 classification. Furthermore, alternative splicing events for genes such as EGFR and FGFR were found to be associated with the risk score. RNA expression levels for genes, which participated in cell proliferation and other processes, were significantly correlated to the risk score. Our results highlight the role of RNA processing genes for further stratifying the survival of patients with LGGs and provide insight into the alternative splicing events underlying this role.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongshuai Li ◽  
Jie Yang ◽  
Guohui Yang ◽  
Jia Ren ◽  
Yu Meng ◽  
...  

AbstractSarcoma is a rare malignancy with unfavorable prognoses. Accumulating evidence indicates that aberrant alternative splicing (AS) events are generally involved in cancer pathogenesis. The aim of this study was to identify the prognostic value of AS-related survival genes as potential biomarkers, and highlight the functional roles of AS events in sarcoma. RNA-sequencing and AS-event datasets were downloaded from The Cancer Genome Atlas (TCGA) sarcoma cohort and TCGA SpliceSeq, respectively. Survival-related AS events were further assessed using a univariate analysis. A multivariate Cox regression analysis was also performed to establish a survival-gene signature to predict patient survival, and the area-under-the-curve method was used to evaluate prognostic reliability. KOBAS 3.0 and Cytoscape were used to functionally annotate AS-related genes and to assess their network interactions. We detected 9674 AS events in 40,184 genes from 236 sarcoma samples, and the 15 most significant genes were then used to construct a survival regression model. We further validated the involvement of ten potential survival-related genes (TUBB3, TRIM69, ZNFX1, VAV1, KCNN2, VGLL3, AK7, ARMC4, LRRC1, and CRIP1) in the occurrence and development of sarcoma. Multivariate survival model analyses were also performed, and validated that a model using these ten genes provided good classifications for predicting patient outcomes. The present study has increased our understanding of AS events in sarcoma, and the gene-based model using AS-related events may serve as a potential predictor to determine the survival of sarcoma patients.


2021 ◽  
Vol 10 ◽  
Author(s):  
Liang Zhao ◽  
Jiayue Zhang ◽  
Zhiyuan Liu ◽  
Yu Wang ◽  
Shurui Xuan ◽  
...  

Alternative splicing (AS) of pre-mRNA has been widely reported to be associated with the progression of malignant tumors. However, a systematic investigation into the prognostic value of AS events in glioblastoma (GBM) is urgently required. The gene expression profile and matched AS events data of GBM patients were obtained from The Cancer Genome Atlas Project (TCGA) and TCGA SpliceSeq database, respectively. 775 AS events were identified as prognostic factors using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) cox model was performed to narrow down candidate AS events, and a risk score model based on several AS events were developed subsequently. The risk score-based signature was proved as an efficient predictor of overall survival and was closely related to the tumor purity and immunosuppression in GBM. Combined similarity network fusion and consensus clustering (SNF-CC) analysis revealed two distinct GBM subtypes based on the prognostic AS events, and the associations between this novel molecular classification and clinicopathological factors, immune cell infiltration, as well as immunogenic features were further explored. We also constructed a regulatory network to depict the potential mechanisms that how prognostic splicing factors (SFs) regulate splicing patterns in GBM. Finally, a nomogram incorporating AS events signature and other clinical-relevant covariates was built for clinical application. This comprehensive analysis highlights the potential implications for predicting prognosis and clinical management in GBM.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ping Ye ◽  
Yan Yang ◽  
Liqiang Zhang ◽  
Guixi Zheng

An alternative splicing (AS) event is a highly complex process that plays an essential role in post-transcriptional gene expression. Several studies have suggested that abnormal AS events were the primary element in the pathological process of cancer. However, few works are dedicated to the study of AS events in esophageal carcinoma (EC). In the present study, clinical information and RNA-seq data of EC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The percent spliced in (PSI) values of AS events were acquired from the TCGA Splice-seq. A total of 183 EC patients were enrolled in this study, and 2,212 AS events were found significantly associated with the overall survival of these patients by univariate Cox regression analysis. The prognostic signatures based on AS events were built by multivariate Cox analysis. Receiver operating characteristic (ROC) curves displayed that the area under the curve (AUC) of the following prognostic signatures, including exon skip (ES), alternate terminator (AT), alternate acceptor site (AA), alternate promoter (AP), alternate donor site (AD), retained intron (RI), and total events, was greater than 0.8, suggesting that these seven signatures had valuable prognosis prediction capacity. Finally, the risk score of prognostic signatures was indicated as an independent risk factor of survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to explore the function of splicing factors (SFs) that were associated with AS events. Also, the interactive network between AS events and SFs identified several hub genes and AS events which need further study. This was a comprehensive study that explored prognosis-related AS events and established valuable prognosis signatures in EC patients. The network of interactions between AS events and SFs might offer novel insights into the fundamental mechanisms of tumorigenesis and progression of EC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Jin ◽  
Rui Li ◽  
Tuo Deng ◽  
Jialiang Li ◽  
Yan Yang ◽  
...  

Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zaisheng Ye ◽  
Miao Zheng ◽  
Yi Zeng ◽  
Shenghong Wei ◽  
He Huang ◽  
...  

Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chenguang Zhao ◽  
Yingrui Zhou ◽  
Hongwei Ma ◽  
Jinhui Wang ◽  
Haoliang Guo ◽  
...  

Abstract Background Oral squamous cell carcinoma (OSCC) is one of the most common maligancies of the head and neck. The prognosis was is significantly different among OSCC patients. This study aims to identify new biomarkers to establish a prognostic model to predict the survival of OSCC patients. Methods The mRNA expression and corresponding clinical information of OSCC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus. Additionally, a total of 26 hypoxia-related genes were also obtained from a previous study. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal hypoxia-related genes which were associated with the prognosis of OSCC. to establish the predictive model (Risk Score) was established for estimating the patient's overall survival (OS). Multivariate Cox regression analysis was used to determine whether the Risk Score was an independent prognostic factor. Based on all the independent prognostic factors, nomogram was established to predict the OS probability of OSCC patients. The relative proportion of 22 immune cell types in each patient was evaluated by CIBERSORT software. Results We determined that a total of four hypoxia-related genes including ALDOA, P4HA1, PGK1 and VEGFA were significantly associated with the prognosis of OSCC patients. The nomogram established based on all the independent factors could reliably predict the long-term OS of OSCC patients. In addition, our resluts indicated that the inferior prognosis of OSCC patients with high Risk Score might be related to the immunosuppressive microenvironments. Conclusion This study shows that high expression of hypoxia-related genes including ALDOA, P4HA1, PGK1 and VEGFA is associated with poor prognosis in OSCC patients, and they can be used as potential markers for predicting prognosis in OSCC patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lunxu Li ◽  
Shilin Xia ◽  
Xueying Shi ◽  
Xu Chen ◽  
Dong Shang

AbstractHepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p &lt; 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR&gt;1, P&lt;0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1024-A1024
Author(s):  
Suman Ghosal

Abstract microRNAs (miRNAs) and long intergenic noncoding RNAs (lincRNAs) have been reported as important markers for many cancers. In search of new markers for the metastatic or aggressive phenotypes in the neuroendocrine tumor pheochromocytomas and paragangliomas (PCPG), we analyzed the non-coding transcriptome from patient gene expression data in The Cancer Genome Atlas. We used differential expression analysis and an elastic-net machine-learning model to identify miRNA and lincRNA transcriptomic signature specific to PCPG molecular subtypes. Similarly, miRNAs and lincRNAs specific to aggressive PCPGs were identified, and univariate and multivariate analysis were performed for identifying factors associated with metastasis-free survival. Upregulation of 13 lincRNAs and 4 miRNAs was found to be associated with aggressive/metastatic PCPGs. RT-PCR validation in tumor samples from PCPG patients confirmed the overexpression of 4 miRNAs and 4 lincRNAs in metastatic compared to non-metastatic PCPGs. Kaplan-Meier analysis identified 3 miRNAs and 5 lincRNAs as prognostic markers for metastasis-free survival of patients in PCPGs. In a multivariate Cox regression analysis combining these miRNA and lincRNA expression signatures with the previously identified clinically relevant parameters like SDHB germline mutation, ATRX somatic mutation, tumor location and hormone secretion phenotypes, we identified the miRNA miR-182 and lincRNA HIF1A-AS2 as independent predictors of poor metastasis-free survival. We formulated a risk-score model using multivariate analysis of lincRNA and miRNA expression profiles, presence of SDHB and ATRX mutations, tumor location, and hormone secretion phenotypes. Stratification of PCPG patients with this risk-score showed significant differences in metastasis-free survival.


Sign in / Sign up

Export Citation Format

Share Document