scholarly journals Exploring the Potential Mechanism of Xiaokui Jiedu Decoction for Ulcerative Colitis Based on Network Pharmacology and Molecular Docking

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Wang ◽  
Yang Liu ◽  
Jianhui Sun ◽  
Nailin Zhang ◽  
Xiaojia Zheng ◽  
...  

Introduction. Network pharmacology is in line with the holistic characteristics of TCM and can be used to elucidate the complex network of interactions between disease-specific genes and compounds in TCM herbal medicines. Here, we investigate the pharmacological mechanism of Xiaokui Jiedu decoction (XJD) for the treatment of ulcerative colitis (UC). Methods. The Computational Systems Biology Laboratory Platform (TCMSP) database was searched and screened for the active ingredients of all drugs in XJD. The Uniport database was used to retrieve possible gene targets for the therapeutic effects of XJD. GeneCards, PharmGKB, TTD, and OMIM databases were used to retrieve XJD-related gene targets. A herb-compound-protein network and a protein-protein interaction (PPI) network were constructed, and hub genes were screened for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to validate the interrelationship between disease target proteins and active drug components. Results. A total of 135 XJD potential action targets, 5097 UC-related gene targets, and 103 XJD-UC intersection gene targets were screened. The hub gene targets of XJD that exert therapeutic effects on UC are RB1, MAPK1, TP53, JUN, NR3C1, MAPK3, and ESR1. GO enrichment analysis showed 741 biofunctional enrichments, and KEGG enrichment analysis showed 124 related pathway enrichments. Molecular docking showed that the active components of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) showed good binding activities to five of the six hub gene targets. Discussion. The active ingredients of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) may regulate the inflammatory and oxidative stress-related pathways of colon cells during the course of UC by binding to the hub gene targets. This may be a potential mechanism of XJD in the treatment of UC.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolu Liu ◽  
Yuling Fan ◽  
Lipeng Du ◽  
Zhigang Mei ◽  
Yang Fu

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, and Gegen Qinlian Decoction (GQD), a Chinese botanical formula, has exhibited beneficial efficacy against UC. However, the mechanisms underlying the effect of GQD still remain to be elucidated. In this study, network pharmacology approach and molecular docking in silico were applied to uncover the potential multicomponent synergetic effect and molecular mechanisms. The targets of ingredients in GQD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM) database, while the UC targets were retrieved from Genecards, therapeutic target database (TTD) and Online Mendelian Inheritance in Man (OMIM) database. The topological parameters of Protein-Protein Interaction (PPI) data were used to screen the hub targets in the network. The possible mechanisms were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the active compounds and hub targets. Network pharmacology analysis successfully identified 77 candidate compounds and 56 potential targets. The targets were further mapped to 20 related pathways to construct a compound-target-pathway network and an integrated network of GQD treating UC. Among these pathways, PI3K-AKT, HIF-1, VEGF, Ras, and TNF signaling pathways may exert important effects in the treatment of UC via inflammation suppression and anti-carcinogenesis. In the animal experiment, treatment with GQD and sulfasalazine (SASP) both ameliorated inflammation in UC. The proinflammatory cytokines (TNF-α, IL-1β, and IL-6) induced by UC were significantly decreased by GQD and SASP. Moreover, the protein expression of EGFR, PI3K, and phosphorylation of AKT were reduced after GQD and SASP treatment, and there was no significance between the GQD group and SASP group. Our study systematically dissected the molecular mechanisms of GQD on the treatment of UC using network pharmacology, as well as uncovered the therapeutic effects of GQD against UC through ameliorating inflammation via downregulating EGFR/PI3K/AKT signaling pathway and the pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6.


2020 ◽  
Author(s):  
Lin Xu ◽  
Jiaqi Zhang ◽  
Zedan Zhang ◽  
Yifan Wang ◽  
Fengyun Wang ◽  
...  

Abstract Background and objective: Ge-Gen-Qin-Lian Decoction (GGQLD), a traditional Chinese medicine (TCM) formula, has been widely used for ulcerative colitis (UC) in China while the pharmacological mechanisms still remain unclear. The present research was designed to clarify the underlying mechanism of GGQD against UC. Methods: In this research, a GGQLD-compound-target-UC (G-U) network was constructed based on public databases to clarify the relationship between active compounds in GGQLD and potential targets. GO and KEGG pathway enrichment analyses were performed to investigate biological functions associated with potential targets. A protein-protein interaction network was constructed to screen and evaluate hub genes and key active ingredients, another GO and KEGG pathway analyses were subsequently performed on hub genes. Molecular docking was used to verify the activities of binding between hub targets and ingredients. Results: Finally, 83 potential therapeutic targets and 118 correspond active ingredients were obtained by network pharmacology. GO and KEGG enrichment analysis revealed that GGQLD had an effect of anti-inflammation, antioxidation, and immunomodulatory. The effect of GGQLD on UC might be achieved by regulating the balance of cytokines (eg., IL6, TNF, IL1β, CXCL8, CCL2, IL10, IL4, IL2) in immune system and inflammation-related pathways, such as IL-17 pathway and Th17 cell differentiation pathway. Besides, molecular docking results demonstrated that the main active ingredients, quercetin, exhibited good affinity to hub targets. Conclusion: This research fully reflects the characteristics of multi-component and multi-target for GGQLD in the treatment of UC. Furthermore, the present study provided new insight into the mechanisms of GGQLD against UC.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Meiqi Wei ◽  
He Li ◽  
Qifang Li ◽  
Yi Qiao ◽  
Qun Ma ◽  
...  

Background. Gegen Qinlian (GGQL) decoction is a common Chinese herbal compound for the treatment of ulcerative colitis (UC). In this study, we aimed to identify its molecular target and the mechanism involved in UC treatment by network pharmacology and molecular docking. Material and Methods. The active ingredients of Puerariae, Scutellariae, Coptis, and Glycyrrhiza were screened using the TCMSP platform with drug ‐ like   properties   DL ≥ 0.18 and oral   availability   OB ≥ 30 % . To find the intersection genes and construct the TCM compound-disease regulatory network, the molecular targets were determined in the UniProt database and then compared with the UC disease differential genes with P value < 0.005 and ∣ log 2   fold   change ∣ > 1 obtained in the GEO database. The intersection genes were subjected to protein-protein interaction (PPI) construction and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After screening the key active ingredients and target genes, the AutoDock software was used for molecular docking, and the best binding target was selected for molecular docking to verify the binding activity. Results. A total of 146 active compounds were screened, and quercetin, kaempferol, wogonin, and stigmasterol were identified as the active ingredients with the highest associated targets, and NOS2, PPARG, and MMP1 were the targets associated with the maximum number of active ingredients. Through topological analysis, 32 strongly associated proteins were found, of which EGFR, PPARG, ESR1, HSP90AA1, MYC, HSPA5, AR, AKT1, and RELA were predicted targets of the traditional Chinese medicine, and PPARG was also an intersection gene. It was speculated that these targets were the key to the use of GGQL in UC treatment. GO enrichment results showed significant enrichment of biological processes, such as oxygen levels, leukocyte migration, collagen metabolic processes, and nutritional coping. KEGG enrichment showed that genes were particularly enriched in the IL-17 signaling pathway, AGE-RAGE signaling pathway, toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transcriptional deregulation in cancer, and other pathways. Molecular docking results showed that key components in GGQL had good potential to bind to the target genes MMP3, IL1B, NOS2, HMOX1, PPARG, and PLAU. Conclusion. GGQL may play a role in the treatment of ulcerative colitis by anti-inflammation, antioxidation, and inhibition of cancer gene transcription.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingxu Zhang ◽  
Jiawei Yang ◽  
Xiulan Zhao ◽  
Ying Zhao ◽  
Siquan Zhu

AbstractDiabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.


2021 ◽  
Author(s):  
Xi Cen ◽  
Yan Wang ◽  
LeiLei Zhang ◽  
XiaoXiao Xue ◽  
Yan Wang ◽  
...  

Abstract BackgroundType 2 diabetes mellitus (T2DM) is regarded as Pi Dan disease in traditional Chinese medicine (TCM). Dahuang Huanglian Xiexin Decoction (DHXD), a classical TCM formula, has been used for treating Pi Dan disease in clinic, its pharmacological mechanism has not been elucidated. MethodsThis study used network pharmacological analysis and molecular docking approach to explore the mechanism of DHXD on T2DM. Firstly, the compounds in DHXD were obtained from TCMSP and TCMID databases, the potential targets were determined based on TCMSP and UniProt databases. Next, Genecards, Digenet and UniProt databases were used to identify the targets of T2DM. Then, the protein-protein interaction (PPI) network was established with overlapping genes of T2DM and compounds, and the core targets in the network were identified and analyzed. Then, the David database was used for GO and KEGG enrichment analysis. Finally, the target genes were selected and the molecular docking was completed by Autodock software to observe the binding level of active components with target genes.ResultsA total of 397 related components and 128 overlapping genes were identified. After enrichment analysis, it was found that HIF-1, TNF, IL-17 and other signaling pathways, as well as DNA transcription, gene expression, apoptosis and other cellular biological processes had the strongest correlation with the treatment of T2DM by DHXD, and most of them occurred in the extracellular space, plasma membrane and other places, which were related to enzyme binding and protein binding. In addition, 42 core genes of DHXD, such as VEGFA, TP53 and MAPK1, were considered as potential therapeutic targets, indicating the potential mechanism of DHXD on T2DM. Finally, the results of molecular docking showed that HIF-1 pathway had strong correlation with the target genes INSR and GLUT4, quercetin and berberine had the strongest binding power with them respectively.ConclusionThis study summarized the main components of DHXD in the treatment of T2DM, identified the core genes and pathways, and systematically analyzed the interaction of related targets, trying to lay the foundation for clarifying the potential mechanism of DHXD on T2DM, so as to carry out further research in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Longchuan Wu ◽  
Yu Chen ◽  
Jiao Yi ◽  
Yi Zhuang ◽  
Lei Cui ◽  
...  

Objective. To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods. First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results. In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion. BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mengshi Tang ◽  
Xi Xie ◽  
Pengji Yi ◽  
Jin Kang ◽  
Jiafen Liao ◽  
...  

Objective. To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods. Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results. A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion. The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Xie ◽  
Jun Wu ◽  
Sihui Yang ◽  
Huaijun Zhou

Background. Aloe vera has long been considered an anticancer herb in different parts of the world. Objective. To explore the potential mechanism of aloe vera in the treatment of cancer using network pharmacology and molecule docking approaches. Methods. The active ingredients and corresponding protein targets of aloe vera were identified from the TCMSP database. Targets related to cancer were obtained from GeneCards and OMIM databases. The anticancer targets of aloe vera were obtained by intersecting the drug targets with the disease targets, and the process was presented in the form of a Venn plot. These targets were uploaded to the String database for protein-protein interaction (PPI) analysis, and the result was visualized by Cytoscape software. Go and KEGG enrichment were used to analyze the biological process of the target proteins. Molecular docking was used to verify the relationship between the active ingredients of aloe vera and predicted targets. Results. By screening and analyzing, 8 active ingredients and 174 anticancer targets of aloe vera were obtained. The active ingredient-anticancer target network constructed by Cytoscape software indicated that quercetin, arachidonic acid, aloe-emodin, and beta-carotene, which have more than 4 gene targets, may play crucial roles. In the PPI network, AKT1, TP53, and VEGFA have the top 3 highest values. The anticancer targets of aloe vera were mainly involved in pathways in cancer, prostate cancer, bladder cancer, pancreatic cancer, and non-small-cell lung cancer and the TNF signaling pathway. The results of molecular docking suggested that the binding ability between TP53 and quercetin was the strongest. Conclusion. This study revealed the active ingredients of aloe vera and the potential mechanism underlying its anticancer effect based on network pharmacology and provided ideas for further research.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2021 ◽  
Author(s):  
Lu Sun ◽  
Zining Wang ◽  
Jian Li ◽  
Li Xu ◽  
Xiaoou Xue

Abstract Background: Primary dysmenorrhea(PD)is the most common gynecologic disorder.Despite the prevalence is high, it is often underdiagnosed,undertreated and normalized even by patients themselves. Guizhi Fuling Formula (GFF) is experientially used for the treatment of PD in a long time. Therefore, the efficiency and potential mechanism are waiting to identify.Methods: We adopted network pharmacology integrated molecular docking strategy in this study.Based on published literatures, the relative compounds of GFF were selected preliminarily. Secondly, the putative targets of PD were obtained by wide-searching DisGeNET, OMIM, Drugbank and GeneCards databases.With protein-protein interaction(PPI) analysis, GO and KEGG pathway enrichment analysis and molecular docking ,we systematically evaluated the relationship of herb ingredients and disease targets.Results: The results showed that 30 ingredients of GFF and 43 hub targets made a difference.Under the further analysis,8 targets(EGFR,AKT1,PTGS2,TNF,ESR1,AHR,CTNNB1,CXCL8) were recognized as key therapeutic targets with excellent binding. The enrichment analyses indicated that the GFF had the potential to influence varieties of biological pathways, especially the pathways in cancer and steroid hormone biosynthesis, which play an important part in the pathogenesis of primary dysmenorrhea.Conclusion: GFF influenced primary dysmenorrhea through the synergistic effect of multiple components, multiple targets, and multiple pathways.This study predictedthe potential mechanism, hope that could made contribution for clinical application and scientific research.


Sign in / Sign up

Export Citation Format

Share Document