scholarly journals Analysis of Foundation Pit Design of Metro Station in Complex Environment

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yunchao Tao

The complex engineering geological conditions and the surrounding environmental conditions of the existing subway lines and adjacent buildings have significantly deepened the difficulty of metro station foundation pit design and construction. Based on the foundation pit project of Luboyuan Station of Nanjing Metro Line 9, this study chooses a reasonable foundation pit support design scheme to carry out related research by analyzing the site geological environmental conditions. Through the analysis and evaluation of the engineering geological conditions of the engineering site, the engineering geological problems that may occur in the process of construction are given. According to the lithologic characteristics of the site strata, the hydrogeological conditions, and the features of the underground engineering structure, the design of the foundation pit supporting system is optimized and analyzed. The results show that making full use of the geological features of strata and adopting effective support methods can ensure the safety of foundation pit construction, reduce the cost of engineering description, and shorten the construction period, which can be used as a reference for similar projects and construction.

2013 ◽  
Vol 848 ◽  
pp. 74-77
Author(s):  
Jin Kui Li ◽  
Yue Bo Fan ◽  
Yi Bing Wang

Cause the deformation of soil around the foundation pit excavation, have a great impact on the surrounding environment. At the same time, the excavation is limited by surrounding environmental conditions. Relying on the Jinzhou underground mall excavation monitoring project, after monitoring the ground settlement and horizontal displacement of pile top and measurement during the construction period, we realize the real-time information construction ,safe and smooth construction in the process of construction. And we conclude some useful conclusions, which can be a reference for similar engineering and reference.


2014 ◽  
Vol 580-583 ◽  
pp. 539-543
Author(s):  
Xian Kai Bao ◽  
Meng Hui Que

We adopt the supporting scheme of soil nailing wall by comparison and selection combining engineering geological conditions and surrounding buildings load situations. And introduce focally its supporting principles and major parameters and main construction points. The scheme meets the engineering requirements proved by the construction acceptance inspection with its safe and rational design and construction convenience.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ebu Bekir Aygar ◽  
Candan Gokceoglu

AbstractStability of large underground structures depends on not only rock mass conditions but also excavation stages and support systems. In addition, complexity of geological conditions and interaction of excavation with in situ conditions affect the performance of design. The Akyazı tunnel (Trabzon, Turkey) is 2478 m long and was designed as 3 lanes and double tubes, and the number of lanes at the junction part increases to 5. Tunnel cross-sectional area from the Akyazı tunnel reaches 3 lanes and 150 m2 to 5 lanes and 438 m2 gradually. The width of the tunnel at the junction point reaches to 31 m. In this study, the necessity of inner lining concrete in tunnels excavated in good rock mass conditions is assessed and the results of the analyses are discussed. The inner lining concrete increases the cost of tunnel construction, as well as extending the construction period. With the procedure followed in the Akyazı tunnel, the top heading part of the tunnel was constructed without inner lining. No stability and drainage problem have not been encountered for 4 years. Currently, the tunnel construction was completed successfully, and the tunnel was opened to traffic. Consequently, the excavation stages, support systems described, and especially inner lining necessities discussed in this study may be applicable for extremely large tunnel sections.


Author(s):  
Sami Demiroluk ◽  
Hani Nassif ◽  
Kaan Ozbay ◽  
Chaekuk Na

The roadway infrastructure constantly deteriorates because of environmental conditions, but other factors such as exposure to heavy trucks exacerbates the rate of deterioration. Therefore, decision-makers are constantly searching for ways to optimize allocation of the limited funds for repair, maintenance, and rehabilitation of New Jersey’s infrastructure. New Jersey legislation requires operators of overweight (OW) trucks to obtain a permit to use the infrastructure. The New Jersey Department of Transportation (NJDOT) issues a variety of permits based on the types of goods carried. These permits allow OW trucks to use the infrastructure either for a single trip or for multiple trips. Therefore, one major concern is whether the permit revenue of the agency can recoup the actual cost of damage to the infrastructure caused by these OW trucks. This study investigates whether NJDOT’s current permit fee program can collect enough revenue to meet the actual cost of damage to the infrastructure caused by these heavy-weight permit trucks. The infrastructure damage is estimated by using pavement and bridge deterioration models and New Jersey permit data from 2013 to 2018 containing vehicle configuration and vehicle route. The analysis indicates that although the cost of infrastructure damage can be recovered for certain permit types, there is room for improvement in the permit program. Moreover, based on permit rules in other states, the overall rank of the New Jersey permit program is evaluated and possible revisions are recommended for future permit policies.


2014 ◽  
Author(s):  
Upendra Malla ◽  
Krishna M. Karri

Floating Production Storage and Offloading (FPSO) sizing and cost estimation has become a challenging task at the early stages of offshore field development. During the early stages of field development designer needs to size and estimate cost in order to decide feasibility of the project. This paper describes a step by step method used to size and estimate the cost of a new built (or) converted FPSO based on basic engineering, existing FPSO data and corresponding metocean criteria for a particular location. This step by step approach covers FPSO sizing, hull structural design, mooring sizing, topsides support design and steel renewal using offshore classification rules and regulations. FPSO cost is estimated based on the design particulars (i.e. hull weights, FPSO particulars, mooring sizes etc.) and current market unit rates. This approach is an effective means to size and estimate cost of an FPSO at early stages of field development which saves overall time and cost for a client.


2017 ◽  
Vol 27 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Jarosław Brodny ◽  
Sara Alszer ◽  
Jolanta Krystek ◽  
Magdalena Tutak

Abstract Underground extraction of coal is characterized by high variability of mining and geological conditions in which it is conducted. Despite ever more effective methods and tools, used to identify the factors influencing this process, mining machinery, used in mining underground, work in difficult and not always foreseeable conditions, which means that these machines should be very universal and reliable. Additionally, a big competition, occurring on the coal market, causes that it is necessary to take action in order to reduce the cost of its production, e.g. by increasing the efficiency of utilization machines. To meet this objective it should be pro-ceed with analysis presented in this paper. The analysis concerns to availability of utilization selected mining machinery, conducted using the model of OEE, which is a tool for quantitative estimate strategy TPM. In this article we considered the machines being part of the mechanized longwall complex and the basis of analysis was the data recording by the industrial automation system. Using this data set we evaluated the availability of studied machines and the structure of registered breaks in their work. The results should be an important source of information for maintenance staff and management of mining plants, needed to improve the economic efficiency of underground mining.


2014 ◽  
Vol 580-583 ◽  
pp. 1013-1018 ◽  
Author(s):  
Hui Feng Su ◽  
Wei Ning Liu ◽  
Fu Chun Liu

Confronting with the difficulties of the construction metro station in the Northeast of China, a new idea of shield method combined prefabricated method is put forward. In the paper the research status of the underground engineering precast assembly technology was analyzed and classified firstly. The method of single round interval shield combined with open-cut (or covered excavation) prefabricated sections and on the basis of shield tunnel to build single arch station is especially worth studying and promotion. Then the key prefabricate theory needing to deal with such as how to calculating the spring stiffness and so forth of the calculating model. The key technology such as joint formation, waterproof and the other of shield method combined with prefabricated method was discussed.


Author(s):  
Qiushui Fang ◽  
Zhingming Li ◽  
Zhen Wang ◽  
Jincheng Wu ◽  
Hongling Yu ◽  
...  

Public transport coverage fails to keep pace with urbanization and urban expansion, which makes the “last kilometer" problem of residents’ travel increasingly prominent”. However, the practice has proved that microcirculation public transportation plays an important role in expanding the coverage of public transportation and promoting the integration of public transportation. Therefore, this paper takes a city bus community as an example. Firstly, it analyses the bus travel demand of commuters connecting to the subway station during the early workday rush hours on basis of IC Big Data, obtains candidate stations of microcirculation bus lines through K-means clustering. Secondly, it establishes the model, the target of which is to minimize  the cost residents' travel and bus operation, under the limited condition of walking distance, passenger number, station spacing and departure frequency. Finally, the genetic algorithm is used to find the optimal solution of the model, so it’s no doubt that the most feasible circular bus route is obtained. The results have positive significance for promoting the construction and operation of public transport integration and promoting the convenience and efficiency of public transport travel. 


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Fahad AlHosni ◽  
Edgar Garnica Echevarria ◽  
Rodrigo Varela

Abstract Well construction process through the unstable formations prone to total losses, pack-off and water influx is challenging. The manuscript describes the casing while drilling (CwD) combined with stage-cementing tool as introduced solution, when the challenge was to ensure that torque limit is not reached while drilling and estimate the effect of CwD on curing total losses and bring the casing while drilling performance to the level of conventional drilling. Introduction of CwD required extensive study of the potential torque while drilling as existing stage-cementing tools have low torque rating. Additionally, the casing fatigue may be a factor affecting the operations what lead to an introduction of magnetic particle casing inspection. The CwD bit design was adopted to the geological conditions based on best performance of the PDC bit, and originally selected drilling parameters were further optimized based on the result of the first runs. As the drilling of the well required utilization of mud cap for well control purposes, the mud recipes were adjusted to optimize the drilling performance and minimize the cost implication. The proposed solutions allowed to eliminate the problem with wellbore instability and related stuck pipe events. Further the proper engineering of the drilling process allowed significantly increase the rate of penetration since the beginning of the implementation, when the drilling torque never reached the limit even at 7,000 ft depth. The manuscript describes in detail the approach to make a proper design of CwD process focusing on prevention of existing problems and aiming to convert mitigation tool to a performance tool. Additionally, in details described the studied effect of CwD on curing total losses in highly fractured environment.


Sign in / Sign up

Export Citation Format

Share Document