scholarly journals Toxicity Evaluation of Arsenic Nanoparticles on Growth, Biochemical, Hematological, and Physiological Parameters of Labeo rohita Juveniles

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Muhammad Akarm Raza ◽  
Zakia Kanwal ◽  
Ambreen Shahid ◽  
Shafaq Fatima ◽  
Amna Sajjad ◽  
...  

The present study aims to assess the induced nanotoxicity of arsenic nanoparticles (AsNPs) on different organs of fresh water fish Labeo rohita. AsNPs were synthesized by chemical reduction method using sodium arsenite as precursor, ice-cold sodium borohydride as reducing agent, and sodium hydroxide to adjust the solution pH. The synthesized AsNPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) for optical, structural, and morphological investigations. The UV-Vis absorption peaks occurring at around 300 nm indicated the presence of AsNPs in colloidal sample. The rhombohedral crystalline nature and metallic purity of AsNPs with crystallite size of 30 ± 1 nm were confirmed by characteristic peaks of XRD pattern. The SEM micrograph revealed the almost spherical shape and 40 ± 10 nm average size prepared AsNPs. For assessment of induced nanotoxicity, juveniles of Labeo rohita (L. rohita) were exposed to three different concentrations of AsNPs (namely, 1, 10, and 20 mg/L) for 30 days (n = 15 per group), and the control fish was kept untreated. It was observed that the routine behavior activities (such as swimming, mutual interactions, and feed intake) were affected by AsNPs. The growth of AsNPs treated fish was found retarded as compared to the control fish. Total erythrocyte count, total leukocyte count, and hemoglobin and hematocrit values were low in the AsNPs treated fish. Immunobiochemical assays revealed that protein level was altered in the AsNPs treated fish. The levels of antioxidant enzymes catalase and superoxide dismutase were low in the treated fish. The histological alteration induced by AsNPs in liver, gills, and kidneys demonstrated the damage in form of glomerulus shrinkage, vacuolation, inflammation, necrosis, lamellar disorganization, and hemorrhage in comparison with untreated fish. The results of the present study indicate that AsNPs exposure causes behavior, growth, hematology, immunobiochemical, and histological shortcomings in L. rohita.

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 309 ◽  
Author(s):  
Zakia Kanwal ◽  
Muhammad Raza ◽  
Farkhanda Manzoor ◽  
Saira Riaz ◽  
Ghazala Jabeen ◽  
...  

In the present in vivo study, we provide a comparison of toxicological consequences induced by four different types of spherical nanoparticles (NPs)—silver nanoparticles (AgNPs, 40 ± 6 nm), nickel (NiNPs, 43 ± 6 nm), cobalt oxide (Co3O4NPs, 60 ± 6 nm), and chromium oxide (Cr3O4NPs, 50 ± 5 nm)—on freshwater fish Labeo rohita. Fish were exposed to NPs (25 mg/L) for 21 days. We observed a NPs type-dependent toxicity in fish. An altered behavior showing signs of stress and a substantial reduction in total leukocyte count was noticed in all NP-treated groups. A low total erythrocyte count in all NP-treated fish except for Co3O4NPs was discerned while a low survival rate in the case of Cr3O4NP-treated fish was observed. A significant decrease in growth and hemoglobin were noticed in NiNP- and Cr3O4NP-treated fish. A considerable total protein elevation was detected in NiNP-, Co3O4NP-, and Cr3O4NP-treated groups. An upgrading in albumin level was witnessed in Co3O4NP- and Cr3O4NP-treated groups while a high level of globulin was noted in NiNP- and Co3O4NP-exposed groups. In all NP-treated groups, a depleted activity of antioxidative enzymes and pathological lesions in liver and kidney were noticed.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Nguyen Phuc Quan 1,2 ◽  
Tran Quoc Vinh 1 ◽  
Kieu Thi My Yen 1 ◽  
Le Vu Khanh Trang 2 ◽  
Nguyen Minh Ly 2 ◽  
...  

The synthesis of silver nanoparticles (Ag NPs) has been carried out using different methods, mainly by biological and chemical methods; however, comparing antibacterial activity of Ag NPs synthesized by these methods has not been conducted before. In this study, silver nanoparticles (Ag NPs) were synthesized by methods using reducing agent NaBH4/carboxymethyl cellulose (CMC) and fungal strain Trichoderma asperellum (T.asperellum). The formation of silver nanoparticles was observed visually by color change and identified by Ultraviolet-visible (UV – vis) spectroscopy. The transmission electron microscopy (TEM) image illustrated almost nanoparticles with spherical shape and average diameter of 4.1 ± 0.2 nm and 2.1 ± 0.2 nm of samples produced from chemical reduction and biosynthesis respectively. Both samples after 180 days storing have been separated lightly, but the agglomeration and absorbance peak shifting were not observed which proved the high stability of synthesized Ag NPs. Antimicrobial activity against human bacterial pathogen Escherichia coli (E. coli) showed that the inhibition zone produced by “biosynthesis” and “chemical reduction” Ag NPs were 3.17 cm and 2.42 cm respectively. With nanoparticles size smaller than 2 mm, antibacterial activity of “biosynthesis” Ag NPs against E. coli was 31 % higher than “chemical reduction” Ag NPs, although the concentration of Ag NPs produced by biosynthesis was about 10-fold less.


2017 ◽  
Vol 68 (8) ◽  
pp. 1711-1715
Author(s):  
Stefania Gheorghe ◽  
Gabriela Geanina Vasile ◽  
Cristina Gligor ◽  
Irina Eugenia Lucaciu ◽  
Mihai Nita Lazar

Metallic elements copper (Cu), zinc (Zn), nickel (Ni) and manganese (Mn) are some of the most commonly found in water and sediment samples collected from the Danube - Danube Delta. These elements are important as essential micronutrients, being normally present at low concentrations in biological organisms, but in high concentrations they become toxic with immediate and delayed effects. The role of this metals is still controversial, that�s why bioconcentration potential is so important. In this non-clinical study, we tested in vitro effect of heavy metals on carp, Cyprinus carpio, reproducing in vivo presence of Cu, Zn, Ni and Mn in the Romanian�s surface water. The toxicity tests were performed according to OECD 203 by detecting the average (50%) lethal concentration - LC50 on aquatic organisms (freshwater fish) at 96h. The results pointed out that, copper value for LC 50 at 96h was estimated as 3.4 mg/L (concentrations tested in the range of 0.1 - 4.75 mg/L). Zinc value for LC 50 at 96h was estimated as 20.8 mg/L (concentrations tested in the range of 0.028 � 29.6 mg/L). Nickel value for LC 50 at 96h was estimated as 40.1 mg/L (concentrations tested in the range of 0.008 - 84.5 mg/L). For manganese the mortality effects has recorded at LC 50 at 96h at estimated value higher than 53 mg/L (concentrations tested in the range of 0.04 - 53.9 mg/L). The accuracy of the testing metals concentration was insured by the screening of the dilution water, as well as food and control fish, acclimated in laboratory conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1428
Author(s):  
Xiaowei Fan ◽  
Xuguo Huai ◽  
Jie Wang ◽  
Li-Chao Jing ◽  
Tao Wang ◽  
...  

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Nguyen Thi Thanh Hai ◽  
Nguyen Duc Cuong ◽  
Nguyen Tran Quyen ◽  
Nguyen Quoc Hien ◽  
Tran Thi Dieu Hien ◽  
...  

Cu nanoparticles are a potential material for creating novel alternative antimicrobial products due to their unique antibacterial/antifungal properties, stability, dispersion, low cost and abundance as well as being economical and ecofriendly. In this work, carboxymethyl cellulose coated core/shell SiO2@Cu nanoparticles (NPs) were synthesized by a simple and effective chemical reduction process. The initial SiO2 NPs, which were prepared from rice husk ash, were coated by a copper ultrathin film using hydrazine and carboxymethyl cellulose (CMC) as reducing agent and stable agent, respectively. The core/shell SiO2@Cu nanoparticles with an average size of ~19 nm were surrounded by CMC. The results indicated that the SiO2@Cu@CMC suspension was a homogenous morphology with a spherical shape, regular dispersion and good stability. Furthermore, the multicomponent SiO2@Cu@CMC NPs showed good antifungal activity against Phytophthora capsici (P. capsici). The novel Cu NPs-based multicomponent suspension is a key compound in the development of new fungicides for the control of the Phytophthora disease.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4386
Author(s):  
Sonia Kudłacik-Kramarczyk ◽  
Anna Drabczyk ◽  
Magdalena Głąb ◽  
Paweł Gajda ◽  
Anna Czopek ◽  
...  

Many studies are being performed to develop effective carriers for controlled cytostatic delivery wherein albumin is a promising material due to its tendency to accumulate near cancer cells. The novelty of this work involves the development of the synthesis methodology of albumin nanoparticles and their biological and physicochemical evaluation. Albumin particles were obtained via the salt-induced precipitation and K3PO4 was used as a salting-out agent. Various concentrations of protein and salting-out agent solutions were mixed using a burette or a syringe system. It was proved that the size of the particles depended on the concentrations of the reagents and the methodology applied. As a result of a process performed using a burette and 2 M K3PO4, albumin spheres having a size 5–25 nm were obtained. The size of nanospheres and their spherical shape was confirmed via TEM analysis. The use of a syringe system led to preparation of particles of large polydispersity. The highest albumin concentration allowing for synthesis of homogeneous particles was 2 g/L. The presence of albumin in spheres was confirmed via the FT-IR technique and UV-Vis spectroscopy. All samples showed no cytotoxicity towards normal human dermal fibroblasts and no hemolytic properties against human erythrocytes (the hemolysis did not exceed 2.5%).


1986 ◽  
Vol 43 (10) ◽  
pp. 2048-2050 ◽  
Author(s):  
W. H. Tam ◽  
P. D. Payson ◽  
R. J. J. Roy

Brook trout fry (Salvelinus fontinalis) were exposed to pH 4.66 for various durations up to 141 d and then returned to neutral water. Growth of test fish was in general significantly lower than that of control fish for exposures up to days 45–78. In four of six groups of acid-treated fish, growth eventually recovered and the growth rates were not different from that of control fish. The results suggested that growth inhibition was induced early in the exposure to sublethally low pH and that recovery in the latter phase of the experiment occurred whether pH remained acidic or was readjusted to neutral.


Author(s):  
Utkarsh Jain ◽  
CS Pundir ◽  
Shaivya Gupta ◽  
Nidhi Chauhan

Recent advancements in nanotechnology, for the biosynthesis of metal nanoparticles through enormous techniques, showed multidimensional developments. One among many facets of nanotechnology is to procure and adopt new advancements for green technology over chemical reduction synthesis. This adaptation for acquiring green nanotechnology leads us to a new dimension of nanobiotechnology. In order to imply one such efforts, in this study the emphasis is being laid on the synthesis of MgO nanoparticles using green technology and eliminating chemical reduction methods. Different characterization techniques such as UV–Vis spectroscopy, transmission electron microscopy, and dynamic light scattering were used to carry out the experiments. The average size of MgO nanoparticles were obtained in the range of 85–95 nm, when synthesized by various sources. The extracts of plants were capable of producing MgO nanoparticles efficiently and exhibited good results during cyclic voltammetry and electrochemical impedance spectroscopy study. The electrode modified with MgO nanoparticles (plant extract) showed good stability (90 days) and high conductivity. This study reports cost-effective and environment-friendly method for synthesis of MgO nanoparticles using plant extracts. The process is rapid, simple, and convenient and can be used as an alternative to chemical method.


2013 ◽  
Vol 756 ◽  
pp. 99-105
Author(s):  
Rajasingam Ratnamalar ◽  
Mustapha Mariatti ◽  
Zulkifli Ahmad ◽  
Sharif Zein Sharif Hussein

This work reports a simple chemical reduction route for the preparation of uniformed Ag nanoparticles whereby a fine control over the sizes of the Ag nanoparticles was studied by varying the concentrations of the reducing agents used. In characterization, UV-Vis spectroscopy showed the changes in optical properties of the Ag nanoparticles with regards to their sizes, where as the XRD patterns of the synthesized Ag nanoparticles confirmed the distinct peaks approximately at 2θ = 38.1°, 44.3°, 64.4°, 77.4°, and 81.5 representing Bragg’s reflections from (111), (200), (220), (311), and (222) planes of the face centred cubic lattice phase. This route of synthesis is feasible to produce Ag nanoparticles with diameters in the range of 30-45 nm.


Author(s):  
Srijan Sunar ◽  
Rajeshkumar S ◽  
Anitha Roy ◽  
Lakshmi T

Copper nanoparticles makes important progress in the area of nanotechnology and nanomedicine due to their good optical, electrical and anti-fungal/bacterial application. It is prepared using some methods such as vacuum vapour deposition, microwave irradiation methods, chemical reduction and laser ablation. The chemical reduction method is simple, inexpensive and gives a liable control of geometrical nanoparticle characteristics like size and shape. 20 millimolar of 80 ml copper sulphate prepared using double distilled water. The plant extract is added with the metal solution and was made into 100 ml solution. The synthesised nanoparticles solution is preliminarily characterized by using UV- vis-spectroscopy, 3ml of the solution is taken in curette and scanned in double beam UV-vis- spectrophotometer from 300 nm to 700 nm wavelength. The agar well diffusion method is used. Different concentration of Cu NPs was tested against Staphylococcus aureus, Streptococcus mutans (gram +), Enterococcus sp and Pseudomonas sp. The result reveals that Moringa Oleifera mediated with copper nanoparticles show effective antibacterial activity. CuNPs ex significantly higher activity with an increase in the zone of inhibition diameter. The plant extract is observed to be dark green, and the copper nanoparticles are seen to be in light greenish in colour. They can be used in toothpaste and oral medicines due to their antibacterial activity. Nanoparticles are expected to be used in future for the effective drug systems and immunity against diseases.


Sign in / Sign up

Export Citation Format

Share Document