scholarly journals Study on the Antitumor Effect and Glycolysis of Andrographolide in Anaplastic Thyroid Carcinoma

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ke Yang ◽  
Ke Wu ◽  
Jianguo Feng ◽  
Ling Yutian ◽  
Xin Zhu ◽  
...  

Objective. To investigate the antitumor effect of andrographolide on the ATC cell lines 8505C and CAL62 and to explore the possible mechanism of the effect. Methods. CCK8 and colony formation assays were performed to detect proliferation. Cell migration was tested by scratch assay. Annexin V/PI staining was used to detect cell apoptosis and cell cycle. Glucose and lactic acid kits were carried out to evaluate the glycolysis level after andrographolide treatment. Western blot was used to detect the changes in the apoptosis-related proteins and glycolysis-related enzymes in both 8505C and CAL62 cells. Results. Treatment with 60 μM andrographolide had significant effects on 8505C and CAL62, including inhibition of proliferation, inhibition of migration, arrest of the cell cycle, promotion of apoptosis, and inhibition of glycolysis. Conclusion. Andrographolide has an antitumor effect and can significantly affect glycolysis in ATC cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2528-2528
Author(s):  
Stefan Faderl ◽  
Alessandra Ferrajoli ◽  
David Harris ◽  
Quin Van ◽  
Waldemar Priebe ◽  
...  

Abstract Proliferation and growth of AML cells result from stimulation by cytokines and high levels of cytokines are associated with poor prognosis in AML. Cytokines act through cellular receptors that are associated with members of the Jak family of protein tyrosine kinases. Upon phosphorylation and activation of Jak, proteins bound to Jak initiate signaling pathways including those regulated by Stat proteins. Since constitutive activation of Jak-Stat has been associated with leukemogenesis, we hypothesize that inhibition of Jak-Stat inhibits proliferation of AML cells. To do this, we studied the effects of WP-1034, a novel and potent inhibitor of Jak-Stat, in the OCIM2 AML cell line and fresh samples from AML patients. OCIM2 cells were deprived of serum for 2 hours and then incubated with 1 to 5 μM WP-1034 to investigate its effect on OCIM2 cell proliferation. After incubation of the cells without and with 1, 2.5, 5, 7.5, and 10 μM WP-1034 for 1 hour, and at 5 μM for 0, 20 min, 40 min, and 1, 2, 3, and 4 hours, we determined expression of Stat 1, 3, and 5, as well as Phospho-stat 1, 3, and 5 in the cells by Western Immunoblotting. In addition, we analyzed cell cycle status by PI staining and flow cytometry. We further evaluated induction of apoptosis of OCIM2 cells following incubation with WP-1034 at 3, 5, and 6 μM using the annexin V-CY5 assay and analyzed caspase 3 and PARP cleavage using Western Immunoblotting. To demonstrate the effect of WP-1034 on marrow cells from AML patients and healthy volunteers we incubated marrow cells with WP-1034 at increasing concentrations and used the blast colony assay to measure inhibition of proliferation. Our results show that: i) WP-1034 effectively inhibits proliferation of OCIM2 cells and AML blast proliferation from patient samples; ii) WP-1034 blocks activation of Stat 3 and 5 by decreasing the amount of Phospho-stat 3 and 5 in OCIM2 cells; iii) WP-1034 causes cell cycle arrest in sub-G0 phase and is able to induce apoptosis in OCIM2 cells; and iv) WP-1034 induces apoptosis involving cleavage of caspase 3 and PARP. Our data suggest that WP-1034, a potent inhibitor of Jak-Stat, inhibits proliferation of AML cells by inhibition of Stat 3 and 5 and induction of caspase-dependent apoptosis.


2019 ◽  
Vol 9 (2) ◽  
pp. 319-323 ◽  
Author(s):  
Li Ping ◽  
Li Mingzhu ◽  
Lü Yuchun

Objective: To explore on the antitumor effect of gefitinib and rapamycin and possible mechanism in normal glucose and high lactic acid microenvironment. Methods: Hela cells are cultured in six conditions: the normal glucose group (NG, glucose 3 mmol/L); the normal glucose + gefitinib group (NGG, glucose 3 mmol/L, gefitinib 2.67 μmol/L); the normal glucose + rapamycin group (NGR, glucose 3 mmol/L, rapamycin 2.67 μmol/L); the high lactate group (NGHL, glucose 3 mmol/L, lactic acid 2.5 mmol/L); the normal glucose + high lactate + gefitinib group (NGHLG, glucose 3 mmol/L, lactic acid 2.5 mmol/L, gefitinib 2.67μmol/L); the normal glucose + high lactate + rapamycin group (NGHLG, glucose 10 mmol/L, lactic acid 2.5 mmol/L, rapamycin 2.67μmol/L). Growth inhibitory rate of Hela cell is determined by CCK-8; Flow cytometry (FCM) is performed to evaluate the cell cycle; The annexin V-phycoerythrin/Propidium Iodide (annexin V-PE/PI) staining combined with flow cytometry is used to examine the cell cycle and apoptosis of Hela cells. Results: Under normal glucose with gefitinib or rapamycin environment, the apoptosis rate of Hela cells is higher than that of the normal glucose group. But the cell apoptosis rate of the gefitinib or rapamycin group decreases in high lactic acid and normal glucose, which is lower than that of the normal glucose and high lactate. Combined with the results of cell cycle, compared with the normal glucose group, percentage of Hela cells in G1/G0 phase increases significantly, the proportion of S phase cells decreases significantly in high lactic acid environment. In the normal glucose and gefitinib environment, Hela cells in G1/G0 phase and S phase are slightly higher than the proportion of normal glucose group, and G2/M phase cells are mild lower than the proportion of normal glucose group. Under the environment of high lactate and normal glucose, the percentage of G1/G0 and S phase cells in the gefitinib increase. As for rapamycin, normal glucose and high lactic acid environment makes cells stay in G1/G0 phase. The presence of rapamycin in the environment of normal sugar and high lactate makes more cells stay in G1/G0 or G2/M phase. Conclusion: Normal glucose and high lactic acid environment is conducive to Hela cell survival, and can promote the expression of EGFR and mTOR. Gefitinib is an antagonist of EGFR and rapamycin is an inhibitor of mTOR.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yong’an Jiang ◽  
Jiayu Liu ◽  
Wangwang Hong ◽  
Xiaowei Fei ◽  
Ru’en Liu

Purpose. Arctigenin (ARG) is a natural lignan compound extracted from Arctium lappa and has displayed anticancer function and therapeutic effect in a variety of cancers. Arctigenin is mainly from Arctium lappa extract. It has been shown to induce autophagy in various cancers. However, as for whether arctigenin induces autophagy in gliomas or not, the specific mechanism is still worth exploring. Methods. Using CCK8, the monoclonal experiment was made to detect the proliferation ability. The scratch experiment and the transwell experiment were applied to the migration and invasion ability. PI/RNase and FITC-conjugated anti-annexin V were used to detect the cell cycle and apoptosis. Western blotting was used to determine the specified protein level, and constructed LC3B-GFP plasmid was used for analysis of autophagy.Results. Our research showed that ARG inhibited the growth and proliferation and invasion and migration of glioma cells in a dose-dependent manner (U87MG and T98G) and arrested the cell cycle and induced apoptosis. Interestingly, ARG induced autophagy in a dose-dependent manner. We applied Western blotting to measure the increase in the key autophagy protein LC3B, as well as some other autophagy-related proteins (increase in Beclin-1 and decrease in P62). In order to further explore the mechanism that ARG passed initiating autophagy to inhibit cell growth, we further found by Western blotting that AKT and mTOR phosphorylation proteins (P-AKT, P-mTOR) were reduced after ARG treatment, and we used AKT agonists to rescue, and the phosphorylated proteins of AKT and mTOR increased, and we found that the autophagy-related proteins were also reversed. And interestingly, the protein of apoptosis was also reversed along with autophagy. Conclusions. We thought ARG inhibited the proliferation of glioma cells by inducing autophagy and apoptosis through the AKT/mTOR pathway.


2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
B Trojanowicz ◽  
Z Chen ◽  
J Bialek ◽  
Y Radestock ◽  
S Hombach-Klonisch ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Mohd Saeed ◽  
Irfan Ahmad ◽  
Irfan A. Ansari

Background: Recently Notch signaling pathway has gained attention as a potential therapeutic target for chemotherapeutic intervention. However, the efficacy of previously known Notch inhibitors in colon cancer is still unclear. The purpose of this study was to investigate the effect of andrographolide on aberrantly activated Notch signaling in SW-480 cells in vitro. Methods: The cytostatic potential of andrographolide on SW-480 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, morphology assessment and colony formation assay. The apoptotic activity was evaluated by FITC Annexin V assay, 4′,6-diamidino-2-phenylindole (DAPI), Hoechst, Rhodamine 123 and Mito Tracker CMXRos staining. Scratch assay for migratory potential assessment. 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA) staining was used to evaluate the Reactive Oxygen Species (ROS) generation. Relative mRNA expression of Bax, Bcl2, NOTCH 1 and JAGGED 1 was estimated by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Cell cycle phase distribution was evaluated Annexin V-FITC/PI staining. Results: MTT assay demonstrated dose and time dependent cytoxicity of andrographolide on SW-480 cells. It also inhibited the migratory and colony forming potential of SW-480 cells. Furthermore, andrographolide also showed disruption of mitochondrial membrane potential and induced apoptosis through nuclear condensation. Flow cytometric evaluation showed andrographolide enhanced early and late apoptotic cells and induced upregulation of proapoptotic (Bax and Bad) and downregulation of antiapoptotic Bcl2 in treated SW-480 cells. Andrographolide augmented intracellular ROS generation and induced G0/G1 phase cell cycle arrest in colon cancer SW480 cells. Furthermore, andrographolide repressed the Notch signaling by decreasing the expression of NOTCH 1 and JAGGED 1. Conclusion: Our findings suggested that andrographolide constraint the growth of SW-480 cells through the inhibition of Notch signaling pathway.


2019 ◽  
Vol 19 (9) ◽  
pp. 1132-1140
Author(s):  
Heba A.E. Mohamed ◽  
Hossa F. Al-Shareef

Background: Quinolones are a significant group of nitrogen heterocyclic compounds that exist in therapeutic agents, alkaloids, and synthetic small molecules that have important biological activities. A wide range of quinolones have been used as antituberculosis, antibacterial, anti-malarial, antifungal, anticonvulsant, anticancer agents and urease inhibitors. Methods: Ethyl 3,3-disubstituted-2-cyano propionates containing hybride quinolones derivatives were synthesized by the reaction of 1-amino-7-hydroxy-4-methylquinolin-2(1H)-one and its dibromo derivative with α, β-unsaturated carbonyl in ethanol. Results: A novel series of hybrid 2-quinolone derivatives was designed and synthesized. The compounds structures were confirmed using different spectroscopic methods and elemental analysis. The cytotoxic activities of all the compounds were assessed against HepG2 cell line in comparison with doxorubicin as a standard drug. Conclusion: Most compounds revealed superior anti-proliferative activity than the standard. Compound 4b, is the most active compound (IC50 = 0.39mM) compared with doxorubicin (IC50 = 9.23mM). DNA flow cytometric analysis of compound 4b showed cell cycle arrest at G2/M phase with a concomitant increase of cells in apoptotic phase. Dual annexin-V/ propidium iodide staining assay of compound 4b revealed that the selected candidate increased the apoptosis of HepG-2 cells more than control.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


2019 ◽  
Vol 19 (14) ◽  
pp. 1728-1736
Author(s):  
Xuefeng Liu ◽  
Yonggang Fan ◽  
Jing Xie ◽  
Li Zhang ◽  
Lihua Li ◽  
...  

Background:The 12-hydroxy-14-dehydroandrographolide (DP) is a predominant component of the traditional herbal medicine Andrographis paniculata (Burm. f.) Nees (Acanthaceae). Recent studies have shown that DP exhibits potent anti-cancer effects against oral and colon cancer cells.Objective:This investigation examined the potential effects of DP against osteosarcoma cell.Methods:A cell analyzer was used to measure cell viability. The cell growth and proliferation were performed by Flow cytometry and BrdU incorporation assay. The cell migration and invasion were determined by wound healing and transwell assay. The expression of EMT related proteins was examined by Western blot analysis.Results:In this study, we found that DP treatment repressed osteosarcoma (OS) cell growth in a dose-dependent manner. DP treatment significantly inhibited OS cell proliferation by arresting the cell cycle at G2/M phase. In addition, DP treatment effectively inhibited the migration and invasion abilities of OS cells through wound healing and Transwell tests. Mechanistic studies revealed that DP treatment effectively rescued the epithelialmesenchymal transition (EMT), while forced expression of SATB2 in OS cells markedly reversed the pharmacological effect of DP on EMT.Conclusion:Our data demonstrated that DP repressed OS cell growth through inhibition of proliferation and cell cycle arrest; DP also inhibited metastatic capability of OS cells through a reversal of EMT by targeting SATB2. These findings demonstrate DP’s potential as a therapeutic drug for OS treatment.


2018 ◽  
Vol 18 (2) ◽  
pp. 210-215 ◽  
Author(s):  
Mona Diab-Assaf ◽  
Josiane Semaan ◽  
Marwan El-Sabban ◽  
Soad K. Al Jaouni ◽  
Rania Azar ◽  
...  

Introduction: Adult T-cell leukemia (ATL) is an aggressive form of malignancy caused by human T- cell lymphotropic virus 1 (HTLV-1). Currently, there is no effective treatment for ATL. Thymoquinone has been reported to have anti-cancer properties. Objective: The aim of this study is to investigatthe effects of TQ on proliferation, apoptosis induction and the underlying mechanism of action in both HTLV-1 positive (C91-PL and HuT-102) and HTLV-1 negative (CEM and Jurkat) malignant T-lymphocytes. Materials and Methods: Cells were incubated with different thymoquinone concentrations for 24h. Cell cytotoxicity was assayed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit. Cell proliferation was determined using CellTiter 96® Non-Radioactive Cell Proliferation. Cell cycle analysis was performed by staining with propidium iodide. Apoptosis was assessed using cell death ELISA kit. The effect of TQ on p53, p21, Bcl-2 protein expression was determined using Western blot analysis while TGF mRNA expression was determined by RT-PCR. Results: At non-cytotoxic concentrations of TQ, it resulted in the inhibition of proliferation in a dose dependent manner. Flow cytometric analysis revealed a shift in the cell cycle distribution to the PreG1 phase which is a marker of apoptosis. Also TQ increase DNA fragmentation. TQ mediated its anti-proliferative effect and apoptosis induction by an up-regulation of TGFβ1, p53 and p21 and a down-regulation of TGF-α and Bcl-2α. Conclusion: Thymoquinone presents antiproliferative and proapoptotic effects in ATL cells. For this reason, further research is required to investigate its possible application in the treatment of ATL.


Sign in / Sign up

Export Citation Format

Share Document