scholarly journals Arctigenin Inhibits Glioblastoma Proliferation through the AKT/mTOR Pathway and Induces Autophagy

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yong’an Jiang ◽  
Jiayu Liu ◽  
Wangwang Hong ◽  
Xiaowei Fei ◽  
Ru’en Liu

Purpose. Arctigenin (ARG) is a natural lignan compound extracted from Arctium lappa and has displayed anticancer function and therapeutic effect in a variety of cancers. Arctigenin is mainly from Arctium lappa extract. It has been shown to induce autophagy in various cancers. However, as for whether arctigenin induces autophagy in gliomas or not, the specific mechanism is still worth exploring. Methods. Using CCK8, the monoclonal experiment was made to detect the proliferation ability. The scratch experiment and the transwell experiment were applied to the migration and invasion ability. PI/RNase and FITC-conjugated anti-annexin V were used to detect the cell cycle and apoptosis. Western blotting was used to determine the specified protein level, and constructed LC3B-GFP plasmid was used for analysis of autophagy.Results. Our research showed that ARG inhibited the growth and proliferation and invasion and migration of glioma cells in a dose-dependent manner (U87MG and T98G) and arrested the cell cycle and induced apoptosis. Interestingly, ARG induced autophagy in a dose-dependent manner. We applied Western blotting to measure the increase in the key autophagy protein LC3B, as well as some other autophagy-related proteins (increase in Beclin-1 and decrease in P62). In order to further explore the mechanism that ARG passed initiating autophagy to inhibit cell growth, we further found by Western blotting that AKT and mTOR phosphorylation proteins (P-AKT, P-mTOR) were reduced after ARG treatment, and we used AKT agonists to rescue, and the phosphorylated proteins of AKT and mTOR increased, and we found that the autophagy-related proteins were also reversed. And interestingly, the protein of apoptosis was also reversed along with autophagy. Conclusions. We thought ARG inhibited the proliferation of glioma cells by inducing autophagy and apoptosis through the AKT/mTOR pathway.

2019 ◽  
Author(s):  
jiang yongan ◽  
Liu Jia yu ◽  
Hong Wangwang ◽  
Fei Xiaowei ◽  
Liu ru'en

Abstract Arctigenin (ARG) is a natural lignan compound extracted from arctium lappa and has displayed anticancer functions and effective treatments in a variety of cancers.Studies had shown that Arctigenin(ARG) inhibits tumors through the AKT/MTOR pathway and mediates autophagy.However,the role in glioma cellshave not still fully understood.This study was designed to investigate whether Arctigenin(ARG) can mediateAKT/mTOR pathway in glioma to regulate autophagy,and affected glioma cells growth and survival.We found that the dose-dependent downregulation of Arctigenin(ARG),reducing cell proliferation,migration and invasion in two human glioblastoma cell lines (U87, T98G),These phenomena were reversed after the administration of the AKT agonist (SC79). Arctigenin(ARG) also affected other autophagy markers such as p62, LC3B.In addition, the apoptotic molecules cleaved-PARP,caspase-9, and cleaved-caspase3 were also dose-dependently altered.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


2015 ◽  
Vol 10 (4) ◽  
pp. 759 ◽  
Author(s):  
Bin Zhou ◽  
Qiang Fu ◽  
Sha-Sha Song ◽  
Hong-Li Zheng ◽  
Yu-Zhen Wei

<p class="Abstract">The aim of this study was to examine the anticancer effects of schizophyllan (a -D-glucan) against the growth of rat CNS-1 glioma cells and preliminarily assess its effect on inducing apoptosis and blocking cell cycle. In order to evaluate its inhibitory effect, firstly MTT assay was conducted followed by annexin V/propidium iodide double staining or propidium iodide single staining, apoptosis and cell cycle using flow cytometry. All the experiments were carried in a dose- and time-dependent manner. Experimental results showed that treatment of 40 and 60 mg/L schizophyllan significantly increa-sed the apoptotic rate and blocked the cell cycle. In addition, increase in the proportion of cells in G0/G1 phase and decrease in the proportion of S-phase cells were also observed. Overall experimental studies suggest that schizo-phyllan can significantly inhibit the growth of rat CNS-1 glioma cells, in vitro and induced apoptosis and blocked the cell cycle.</p><p> </p>


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4478-4478 ◽  
Author(s):  
Noriyoshi Iriyama ◽  
Hirotsugu Hino ◽  
Shota Moriya ◽  
Masaki Hiramoto ◽  
Yoshihiro Hatta ◽  
...  

Abstract Background:Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow. D-type cyclins (CCNDs), an important family of cell cycle regulators, are thought to be implicated in multiple myeloma (MM) development because CCNDs are commonly expressed in myeloma cells. CCND is known to positively regulate the cell cycle from G1 to S-phase initiation by binding to cyclin-dependent kinase (CDK) 4/6, resulting in potentiation of myeloma cell growth. These findings suggest a possible role for CDK4/6-targeting therapy in MM, yet the details remain incompletely understood. In this regard, we investigated the biological activity of abemaciclib, a potent, highly selective CDK4/6 inhibitor, in myeloma cell lines, to elucidate the mechanisms underlying the involvement of the CCND-CDK4/6 complex in cell cycle regulation and survival. Methods:The effects of abemaciclib on myeloma cells were investigated using three myeloma cell lines, KMS12-PE (CCND1-positive and CCND2-negative), RPMI8226 (CCND1-negative and CCND2-positive), and IM-9 (both CCND1- and CCND2-positive). Cell growth was assessed by trypan blue exclusion assay. Cell cycle analysis was performed using propidium iodide (PI) and apoptosis was measured using annexin V/PI staining via flow cytometry. Cell cycle regulated proteins, including p21 and p27, and phosphorylated proteins, including STAT1, STAT3, ERK, JNK, p38, and AKT, were evaluated using a phospho-flow method. Autophagy was assessed using CYTO-ID via flow cytometry. PARP cleavage was investigated via western blotting. Clarithromycin, an antibiotic agent belonging to the macrolide class, was used as an autophagy inhibitor. Results:Abemaciclib inhibited myeloma cell growth in a dose-dependent manner in all the cell lines evaluated, with significant differences seen at a concentration of 320 nM. Annexin V/PI staining revealed that 1 μM abemaciclib showed little or no effect on apoptosis, but 3.2 μM abemaciclib induced apparent myeloma cell apoptosis, with an increase in both the early and late apoptotic fractions. Therefore, 1 and 3.2 μM of abemaciclib were used in subsequent experiments for the assessment of cell growth and apoptosis, respectively. Cell cycle analyses revealed that 1 μM abemaciclib increased the fraction of cells in G0/G1 phase and decreased the fraction in S-G2/M phase. Furthermore, this effect was associated with the upregulation of p21 and p27 in the evaluated myeloma cells. PARP cleavage was observed in KMS12-PE cells treated with 3.2 μM abemaciclib, but not 1 μM, suggesting a close connection between the degree of PARP cleavage and apoptosis in myeloma cells. Importantly, abemaciclib induced autophagy in a dose-dependent manner. However, no apparent inhibitory effect on the autophagy-related phosphorylated proteins STAT1 (Y701), STAT3 (Y705), ERK (T202/Y204), JNK (T183/Y185), p38 (T180/Y182), or AKT (Y315) was observed in myeloma cells treated with 3.2 μM abemaciclib. To investigate the role of abemaciclib-induced autophagy on myeloma cell apoptosis, we further assessed the apoptotic effect of 3.2 μM abemaciclib or 50 μg/mL clarithromycin, alone or in combination. Clarithromycin did not induce apoptosis of myeloma cells. Importantly, clarithromycin treatment in combination with abemaciclib attenuated the apoptotic effect of abemaciclib. Discussion & Conclusions: Although the underlying mechanisms conferring the level of CCND expression are known to differ greatly (e.g., CCND translocation, hyperdiploidy, or activation of upstream pathways of CCND transcription), the results of the current study indicate that the CCND-CDK4/6 complex is closely involved in myeloma cell growth and survival regardless of the CCND family member present. In addition, we demonstrate that abemaciclib exerts multiple effects, such as myeloma cell apoptosis, via the PARP pathway or autophagy, as well as cell cycle regulation. Because abemaciclib in combination with clarithromycin inhibits myeloma cell apoptosis, the autophagy induced by abemaciclib is considered to have a critical role in the induction of apoptosis, so-called "autophagic cell death." These results provide novel insights into a possible therapeutic approach using abemaciclib to target CDK4/6 in patients with MM, and offer new possibilities for combination therapy with CDK4/6 inhibitors and autophagy regulators. Disclosures Iriyama: Novartis: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau. Hatta:Novartis Pharma: Honoraria.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Jianzhou Li ◽  
Qing Zhao ◽  
Xiaohong Jin ◽  
Yanhua Li ◽  
Jian Song

Abstract Objective: The present study aimed to investigate the regulatory role of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) on high glucose (HG)-induced mouse mesangial cells (MMCs). Methods: PVT1 expression in diabetic nephropathy (DN) mice and HG-induced MMCs was detected by qRT-PCR. EdU and Colony formation, Annexin V-PI staining, Muse cell cycle, Scratch, and Transwell assays were performed to detect the cell proliferation, apoptosis, cell cycle, migration, and invasion, respectively. The contents of fibrosis factors in cell-culture supernatants were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to detect the expression of factors involved in apoptosis, cell cycle, migration and invasion, fibrosis, and PI3K/Akt/mTOR pathway. The targeting relation between miR-93-5p and PVT1 was predicted by StarBase3.0 (an online software for analyzing the targeting relationship) and identified by Dual-luciferase reporter (DLR) assay. Results: PVT1 was overexpressed in DN kidney tissues and HG-induced MMCs. HG-induced MMCs exhibited significantly increased EdU-positive cells, cell colonies, S and G2/M phase cells, migration and invasion ability, and contents of fibrosis factors, as well as significantly decreased apoptosis rate compared with NG-induced MMCs. HG significantly up-regulated Bcl-2, CyclinD1, CDK4, N-cadherin, vimentin, Col. IV, FN, TGF-β1 and PAI-1, and down-regulated Bax, cleaved caspase-3, cleaved PARP, and E-cadherin in MMCs. Silencing of PVT1 eliminated the effects of HG in MMCs and blocked PI3K/Akt/mTOR pathway. MiR-93-5p was a target of PVT1, which eliminated the effects of PVT1 on HG-induced MMCs. Conclusions: PVT1 silencing inhibited the proliferation, migration, invasion and fibrosis, promoted the apoptosis, and blocked PI3K/Akt/mTOR pathway in HG-induced MMCs via up-regulating miR-93-5p.


2012 ◽  
Vol 90 (11) ◽  
pp. 1553-1558 ◽  
Author(s):  
Wei Zhang ◽  
Anheng Liu ◽  
Yan Li ◽  
Xingyu Zhao ◽  
Shijie Lv ◽  
...  

Induction of apoptosis in tumor cells has become the major focus of anti-tumor therapeutics development. Juglone, a major chemical constituent of Juglans mandshurica Maxim, possesses several bioactivities, including anti-tumor. In the present study, HeLa cells were incubated with juglone at various concentrations. The proliferation inhibition of juglone on HeLa cells was tested by the MTT assay. Occurrence of apoptosis was detected by Hoechst 33258 staining, flow cytometry, and transmission electron microscopy. The expression of apoptotic-related proteins was examined by Western blot. The results showed that juglone inhibits the growth of HeLa cells in dose–dependent manner. Topical morphological changes of apoptotic body formation after juglone treatment were observed. The percentages of early apoptosis of Annexin V-FITC were 5.23%, 7.95%, 10.69%, and 20.92% with the concentrations of juglone (12.5, 25, 50, and 100 µmol/L), respectively. After cells were treated with juglone at the different dose for 24 h, the expression of Bcl-2 was significantly down-regulated and the expression of Bax was significantly up-regulated compared with the control. These events paralleled with activation of caspase-9, -8, -3, and PARP cleavage. The results suggest that juglone may be effective for the treatment of HeLa cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4017-4017
Author(s):  
Seoju Kim ◽  
Jinsun Yoon ◽  
Eun Shil Kim ◽  
Byoungbae PARK ◽  
Junghye Choi ◽  
...  

Abstract Over the past several decades, there has been considerable effort in the synthesis of narciclasine, lycoricidine, and pancratistatin. These naturally occurring isocarbostryls are known to have potent antitumoral and antiviral effects. Among them, trans-dihydronarciclasine isolated from the Chinese medicinal plant, Zephyranthes candida, exhibits even higher potency than pancratistatin against several human cancer cell lines and murine P388 lymphocytic leukemia cell line. However, much remains to be known about antitumoral mechanism of this natural product. In addition, the effect of transdihydronarciclasine in human acute myeloid leukemia (AML) has been not elucidated. The present study was undertaken to investigate the effect of novel synthetic (±)trans-dihydronarciclasine compound (code name; HYU-01) in human acute myeloid leukemia (AML). Treatment of HYU-01 for 72 hr inhibited the proliferation of human AML cell lines as well as primary leukemic blasts from AML patients in a dose-dependent manner with IC50 ranging from 1×10−7M to 5×10−8M. To address the mechanism of the antiproliferative effect of HYU-01, cell cycle analysis was performed in HL-60 cells. DNA flow cytometric analysis indicated that HYU-01 (2.5×10−7M) efficiently induced G1 arrest. Analysis of cell cycle-related proteins demonstrated that expression levels of CDK2, CDK4, CDK6, cyclin E and cyclin A were decreased in a time-dependent manner, and expression of cyclin D1 was up-regulated. In contrast, the level of cyclin B was not altered. In addition, HYU-01 (2.5×10−7M, 72 hr) increased the expression level of the CDKI p27kip1 and markedly enhanced the binding of p27 with CDK2, CDK4, and CDK6 compared to HYU-01-untreated cells. Furthermore, the activity of CDK2-associated kinase was decreased, which resulted in the hypophosphorylation of Rb protein. HYU- 01 also induced the apoptosis in HL-60 cells. The apoptotic process was associated with increased Bax and decreased Bid, Bcl-XL and poly(ADP-ribose) polymerase (PARP), primary leukemic blasts from AML patients in a dose-dependent manner with IC50 ranging from 1×10−7M to 5×10−8M. To address the mechanism of the antiproliferative effect of HYU-01, cell cycle analysis was performed in HL-60 cells. DNA flow cytometric analysis indicated that HYU-01 (2.5×10−7M) efficiently induced G1 arrest. Analysis of cell cycle-related proteins demonstrated that expression levels of CDK2, CDK4, CDK6, cyclin E and cyclin A were decreased in a time-dependent manner, and expression of cyclin D1 was up-regulated. In contrast, the level of cyclin B was not altered. In addition, HYU-01 (2.5×10− 7M, 72 hr) increased the expression level of the CDKI p27kip1 and markedly enhanced the binding of p27 with CDK2, CDK4, and CDK6 compared to HYU-01-untreated cells. Furthermore, the activity of CDK2-associated kinase was decreased, which resulted in the hypophosphorylation of Rb protein. HYU-01 also induced the apoptosis in HL-60 cells. The apoptotic process was associated with increased Bax and decreased Bid, Bcl-XL and poly(ADP-ribose) polymerase (PARP), and activation of caspase-8, -9, and -3, and release of cytochrome C from mitochondria into cytosol. In addition, the apoptosis by HYU-01 was accompanied with the down-regulation of ERK and P90RSK. These results suggest that HYU-01 inhibit the proliferation of AML cells via triggering the apoptosis as well as the induction of p27 and the reduction of CDK2 activity leading to G1 arrest.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5376-5376 ◽  
Author(s):  
Thomas Ippolito ◽  
Greg Tang ◽  
Cory Mavis ◽  
Juan J Gu ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
...  

Abstract Background: Despite significant gains achieved in the treatment of Burkitt lymphoma (BL), current multi-agent immunochemotherapeutic regimens lead to high rates of acute toxicity, and relapsed/refractory disease still represents a significant hurdle with survival expected in only about 20-30% of such patients. Novel targeted therapeutic approaches are necessary to reduce treatment related toxicity in the up-front setting and improve survival in the relapsed/refractory setting. Analyses of genomic abnormalities in BL have identified increased activation of the PI3K/Akt/mTOR pathway in BL, induced by tonic B-cell receptor signaling and increased expression of Myc induced microRNAs (miRs), as having a significant role in Burkitt lymphomagensis. Additionally, recent reports have implicated higher expression of PI3K activating, Myc induced miRs in pediatric patients with a higher risk of relapse. While focused targeting of PI3K with the PI3K-delta isoform specific inhibitor idelalisib has led to significant activity in indolent B-cell lymphomas, limited activity has been noted in the setting of more aggressive forms. A broader inhibition of both upstream and downstream components of the pathway may exhibit more significant anti-lymphoma activity. To this end, we investigated the in vitro effects of PI3K/Akt/mTOR pathway inhibition with the dual pan-PI3K/mTOR inhibitor Omipalisib (GSK458) in chemotherapy-sensitive and -resistant BL cell line models. Methods: The in vitro effect of omipalisib was investigated in the BL cell lines Raji, Raji 4RH (chemotherapy-rituximab resistant), Raji 8RH (rituximab resistant), Ramos, and Daudi. Cell viability following exposure to omipalisib alone and in combination with cytotoxic chemotherapeutic agents was analyzed using Cell-Titer Glo and Alamar Blue assays. Apoptosis was analyzed using western blotting for PARP and by flow cytometry with Annexin V-propidium iodide staining. Downstream targets in the PI3K/Akt/mTOR pathway were analyzed using western blotting. Cell cycle analysis was performed by flow cytometry using propidium iodide staining. Synergistic activity of combination exposures was determined by calculation of a combination index using CalcuSyn software. Results: In vitro exposure of BL cell lines to omipalisib in concentrations ranging from 0.05μM to 50μM for 24, 48 or 72 hours resulted in a dose and time dependent decrease in viable cells with significant activity noted at even low nM concentrations (48 hour IC50 values: Raji=1.2μM, Raji 4RH=0.02μM, Raji 8RH=1.9μM, Ramos=0.01μM, Daudi=0.01μM). Flow cytometry for Annexin V and propidium iodide, after 72 hours of single agent exposure to omipalisib, showed a marked induction of apoptosis in all cell lines. For example, at an omipalisib concentration of 200nM, the percentage of Annexin V positive cells were Raji=40.7%, Raji 4RH=4.4%, Raji 8RH=41.5%, Ramos=59.4% and Daudi=46.9%. Approximately ten-fold higher omipalisib concentrations were required to induce similar degrees of apoptosis in the chemotherapy resistant Raji 4RH cell line compared to chemotherapy sensitive cell lines. Western blotting for downstream targets of the PI3K/Akt/mTOR pathway, including S6 and GSK3Β, showed a reduction in phosphorylation after 30 minutes of exposure to omipalisib in all cell lines. Determination of cell cycle progression following exposure to omipalisib for 72 hours at concentrations ranging from 0.006μM to 25μM showed dose-dependent cell cycle arrest in G1 phase in all cell lines; however the chemotherapy resistant Raji 4RH cells arrested in G2/M at higher concentrations. When BL cells were exposed to omipalisib in combination with either doxorubicin or dexamethasone, synergistic anti-tumor activity was observed in all cell lines tested. Conclusion: Inhibition of PI3K and mTOR by the dual inhibitor omipalisib suppresses activation of the PI3K/Akt/mTOR pathway leading to impaired BL cell proliferation with G1 cell cycle arrest and induction of apoptosis in chemotherapy-sensitive and -resistant cell line models of BL. Inhibition of the PI3K/Akt/mTOR pathway with omipalisib also increases the in vitro response to cytotoxic chemotherapeutic agents. Our findings note the pre-clinical activity of PI3K/Akt/mTOR pathway inhibition in BL and highlight the relevance of pursuing PI3K/Akt/mTOR pathway inhibition as a potential therapeutic option in BL. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Bin Liu ◽  
Liang Xu ◽  
E-Nuo Dai ◽  
Jia-Xin Tian ◽  
Jian-Min Li

Osteosarcoma (OS) is the most common primary malignancy of skeleton with higher mortality rates amongst children and young adults worldwide, whereas effective and secure therapies have also been sought by researches with ongoing efforts. The purpose of the present study was to investigate the impact of N′-[(3Z)-1-(1-hexyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene] benzohydrazide (MDA19) on OS and explore its potential mechanism. Cell Counting Kit-8 (CCK8) and colony formation assay were employed to evaluate the potential effect of MDA19 on U2OS and MG-63 cells proliferation. Moreover, transwell migration and invasion assay were performed to assess the influence of MDA19 on U2OS and MG-63 cells migration and invasion. In addition, Annexin V-FITC/propidium iodide (Annexin V-FITC/PI) staining and flow cytometry were used to examine apoptotic ratio of the U2OS and MG-63 cells. Meanwhile, Western blot analysis was applied to explore change of relevant mechanism proteins in OS cells treated with MDA19. Our study showed that MDA19 had anti-proliferative activity of OS cells in a dose- and time-dependent manner, simultaneously, inhibition of colony formation was also observed in U2OS and MG-63 cells after incubation of MDA19. Besides, MDA19 could significantly inhibit the number of migrated and invaded OS cells and markedly increase the OS cells apoptosis rate. Mechanistically, we detected detectable reductions in apoptosis related proteins, epithelial–mesenchymal transition (EMT)-related proteins and activity of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling in U2OS and MG-63 cells exposure to MDA19. Overall, the current study indicates in vitro anti-proliferative, anti-metastatic, and pro-apoptotic potential of MDA19 in U2OS and MG-63 cells. Our findings propose a clue for further studies with this compound in preclinical and clinical treatment for OS.


Sign in / Sign up

Export Citation Format

Share Document