scholarly journals Effect of Dynamic Imbibition on the Development of Ultralow Permeability Reservoir

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yafei Hu ◽  
Fei Ren ◽  
Junshi Li ◽  
Zhiying Wu ◽  
Huanhuan Peng ◽  
...  

To explore the methodology for improving ultralow permeability reservoir recovery, cores of ultralow permeability reservoirs in China’s Ordos Basin were selected to study the dynamic imbibition micromechanism of crude oil in nanopore throat through core-flooding laboratory experiment and nuclear magnetic resonance (NMR) observation. In the meantime, the microimbibition characteristics and dynamic discharge of oil between matrix and fracture in partially closed boundary reservoirs were simulated to utmostly reflect the actual reservoir conditions. Our findings suggest that dynamic imbibition between fracture and matrix serves the core technology for improving the recovery of ultralow permeability reservoirs, while the main factors affecting dynamic imbibition efficiency include wettability, permeability, injection rate, fracture, water huff and puff cycles, and soaking time. Wettability, in particular, weighs the most, and imbibition can take place either on water-wet rocks or transformed oil-wet rocks with an imbibition agent added in during the waterflooding process. Meanwhile, the higher the permeability is in place, the greater the dynamic imbibition recovery might achieve. The experiments indicate that the dynamic imbibition recovery of a fractured core is 16.26% higher than that of a nonfractured core. Additionally, fractures can not only enhance imbibition recovery but also accelerate the occurrence of dynamic imbibition. The optimal water injection rate of dynamic imbibition is 0.1 mL/min; the reasonable huff and puff cycle of the ultralow permeability reservoirs tends to be two to three cycles; the optimal soaking time of ultralow permeability reservoir is speculated to be 30 days. Finally, the field practice shows that after Stimulated Reservoir Volume (SRV) and dynamic imbibition in 5 horizontal wells in An83 oilfield, there is a remarkable drop in water cut and a noticeable rise in oil production. This research underpins the significance of a dynamic imbibition effect in the development of ultralow permeability oilfield.


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.



2013 ◽  
Vol 734-737 ◽  
pp. 1200-1203
Author(s):  
Shu Qiang Liu ◽  
Ji Cheng Zhang ◽  
Jin Cheng Xu

During polymer flooding, certain amount of polymer would be lost. Polymer retention causes sweep volume expanding on one side, it also causes polymer loss on the other. Therefore, it is a very important topic to study the influencing factors of polymer retention. There are many factors affecting polymer retention process. This paper mainly studied the influence from dynamic factors such as polymer solution concentration, injection rate, injection time, injected pv number. This paper investigated the influence of these factors on polymer retention process, and optimized these factors to minimize polymer loss in reservoir.



Author(s):  
Talal Ous ◽  
Elvedin Mujic ◽  
Nikola Stosic

Water injection in twin-screw compressors was examined in order to develop effective humidification and cooling schemes for fuel cell stacks as well as cooling for compressors. The temperature and the relative humidity of the air at suction and exhaust of the compressor were monitored under constant pressure and water injection rate and at variable compressor operating speeds. The experimental results showed that the relative humidity of the outlet air was increased by the water injection. The injection tends to have more effect on humidity at low operating speeds/mass flow rates. Further humidification can be achieved at higher speeds as a higher evaporation rate becomes available. It was also found that the rate of power produced by the fuel cell stack was higher than the rate used to run the compressor for the same amount of air supplied. The efficiency of the balance of plant was, therefore, higher when more air is delivered to the stack. However, this increase in the air supply needs additional subsystems for further humidification/cooling of the balance-of-plant system.



1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.



Author(s):  
Pradyumna Challa ◽  
James Hinebaugh ◽  
A. Bazylak

In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.



2021 ◽  
Author(s):  
Xuefen Liu ◽  
Fei Chen ◽  
Hongwu Xu ◽  
Yazhou Li ◽  
Siyang Wang ◽  
...  


2021 ◽  
Author(s):  
Muhammad Amin Rois ◽  
Willy Dharmawan

Abstract Banyu Urip reservoir management heavily rely on river-sourced water as water injection to meet Voidage Replacement Ratio target of 1. The treatment facility which consist of Raw Water Basin, Clarifiers, Multi Media Fine (MMF) Filters and Cartridge Filters, is sensitive to seasonal transition and river condition. This paper shares lesson learnt in operating such facility and troubleshooting guidance to overcome challenges of high turbidity during rainy season and lack of river water volume during drought season. To maintain the design intent of Banyu Urip (BU) water treatment facility in achieving water injection quality and quantity at reasonable cost, following activities were undertaken: [1] Critical water parameters data gathering & analysis across each unit; [2] Clarifier Chemical injection dosage verification based on laboratory test; [3] MMF Media coring inspection to assess the filtering media condition; [4] MMF Filters backwash parameters optimization; [5] MMF Filter on-off valve sequencing optimization to address water hammering issue; [6] Water injection rate management to deal with river water source availability along the year. Critical water parameters analysis revealed that chemical dosages were in-adequate to treat the five times higher turbidity coming into Clarifiers during early rain 2019. On top of this, low Raw Water Basin level at the end of long drought further contributed to jeopardize Clarifier's operation. Although in-adequate chemicals injection was resolved at early 2020, the treatment cost remained high, especially on filtration section. Media coring result on MMF Filters confirmed that the filtering media have been poisoned by carried-over mud from Clarifiers during upset. The operation of MMF Filters required extensive optimization on backwash parameters to successfully recover the MMF Filters performance without media replacement. Latest media coring on the worst MMF Filter showed that there was no more top mud layer and the amount of trapped mud had been decreased significantly. Cartridge Filter replacement interval was improved from 38 hours to 186 hours, therefore water treatment cost dropped with quite significant margin. Additionally, the availability of each MMF Filters was also improved. At the same time, the high water injection rate during 2020 rainy season, had successfully increased reservoir pressure buffer up to its maximum point as the anticipation of prolonged drought season. This paper provides the troubleshooting guidance for MMF Filter application in season-prone water treatment facility including insights on interpretation of media coring result and linking it back to optimization strategy on the MMF Filters drain down time for effective backwash process without having excessive media loss.



1982 ◽  
Vol 19 (7) ◽  
pp. 593-595 ◽  
Author(s):  
Tsutomu OKUBO ◽  
Yoshio MURAO


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.



2021 ◽  
Vol 15 (58) ◽  
pp. 1-20
Author(s):  
Qingchao Li ◽  
Liang Zhou ◽  
Zhi-Min Li ◽  
Zhen-Hua Liu ◽  
Yong Fang ◽  
...  

Hydraulic fracturing with oriented perforations is an effective technology for reservoir stimulation for gas development in shale reservoirs. However, fracture reorientation during fracturing operation can affect the fracture conductivity and hinder the effective production of shale gas. In the present work, a numerical simulation model for investigating fracture reorientation during fracturing with oriented perforations was established, and it was verified to be suitable for all investigations in this paper. Based on this, factors (such as injection rate and fluid viscosity) affecting both of initiation and reorientation of the hydraulically induced fractures were investigated. The investigation results show that the fluid viscosity has little effect on initiation pressure of hydraulically induced fracture during fracturing operation, and the initiation pressure is mainly affected by perforation azimuth, injection rate and the stress difference. Moreover, the investigation results also show that perforation azimuth and difference between two horizontal principle stresses are the two most important factors affecting fracture reorientation. Based on the investigation results, the optimization of fracturing design can be achieved by adjusting some controllable factors. However, the regret is that the research object herein is a single fracture, and the interaction between fractures during fracturing operation needs to be further explored.



Sign in / Sign up

Export Citation Format

Share Document