scholarly journals Sonar Image Target Detection and Recognition Based on Convolution Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wu Yanchen

Recent advancements in deep learning offer an effective approach for the study in machine vision using optical images. In this paper, a convolution neural network is used to deal with the target task of sonar detection, and the performance of each neural network model in the sonar image detection and recognition task of underwater box and tire is compared. The simulation results show that the neural network method proposed in this paper is better than the traditional machine learning methods and SSD network models. The average accuracy of the proposed method for sonar image target recognition is 93%, and the detection time of a single image is only 0.3 seconds.

Author(s):  
Soha Abd Mohamed El-Moamen ◽  
Marghany Hassan Mohamed ◽  
Mohammed F. Farghally

The need for tracking and evaluation of patients in real-time has contributed to an increase in knowing people’s actions to enhance care facilities. Deep learning is good at both a rapid pace in collecting frameworks of big data healthcare and good predictions for detection the lung cancer early. In this paper, we proposed a constructive deep neural network with Apache Spark to classify images and levels of lung cancer. We developed a binary classification model using threshold technique classifying nodules to benign or malignant. At the proposed framework, the neural network models training, defined using the Keras API, is performed using BigDL in a distributed Spark clusters. The proposed algorithm has metrics AUC-0.9810, a misclassifying rate from which it has been shown that our suggested classifiers perform better than other classifiers.


The human visual system can make a distinction of tiger from cat very easily without taking any efforts. But in case of a computer system, it is a very complicated job. Identifying and differentiating task has to deal with many challenges but the human brain makes it effortless. Self learning or heuristic techniques are most relevant in this area. The recognition task is to search for the particular object of same shape, color and texture and so on, of the trained objects and match with input. The geometrical distinction such as zoom in, zoom out, rotation etc result in poor performance. This paper uses convolution neural network models Alexnet and VGGNet on object recognition problems which are added with novel heuristic method. We have used CIFAR-10 dataset. The performance and computation speeds are found efficient.


2020 ◽  
Vol 13 (2) ◽  
pp. 47-55
Author(s):  
Evan Tanuwijaya ◽  
Chastine Fatichah

The difficulty of finding a parking space in public places, especially during peak hours is a problem experienced by drivers. To assist the driver in finding parking space availability, a system is needed to monitor parking availability. One study to detect the availability of parking lots utilizing CCTV. However, research on the availability of parking spaces on CCTV data has several problems, detecting parking slots that are done manually to be inefficient when applied to different parking lots. Also, research to detect the availability of parking lots using the Convolution Neural Network (CNN) method with existing architecture has many parameters. Therefore, this study proposes a system to detect the availability of car parking lots using You Only Look Once (YOLO) V3 for marking the parking space and proposed a new architecture CNN called Lite AlexNet which has few parameters than other methods to speed up the process of detecting parking space availability. The best accuracy of the marking stage using YOLO V3 is 92.31% where the weather was cloudy. For the proposed Lite AlexNet get the best time training average which is 7 second compare to other existing methods and the average accuracy in every condition is 92.33% better than other methods.


The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


1995 ◽  
Vol 06 (05) ◽  
pp. 681-692
Author(s):  
R. ODORICO

A Neural Network trigger for [Formula: see text] events based on the SVT microvertex processor of experiment CDF at Fermilab is presented. It exploits correlations among track impact parameters and azimuths calculated by the SVT from the SVX microvertex detector data. The neural trigger is meant for implementation on the systolic Siemens microprocessor MA16, which has already been used in a neural-network trigger for experiment WA92 at CERN. A suitable set of input variables is found, which allows a viable solution for the preprocessing task using standard electronic components. The response time of the neural-network stage of the trigger, including preprocessing, can be estimated ~10 μs. Its precise value depends on the quantitative specifications of the output signals of the SVT, which is still in development. The performance of the neural-network trigger is found to be significantly better than that of a conventional trigger exclusively based on impact parameter data.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-21
Author(s):  
Jayant Gupta ◽  
Carl Molnar ◽  
Yiqun Xie ◽  
Joe Knight ◽  
Shashi Shekhar

Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-E approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.


2018 ◽  
Vol 8 (8) ◽  
pp. 1290 ◽  
Author(s):  
Beata Mrugalska

Increasing expectations of industrial system reliability require development of more effective and robust fault diagnosis methods. The paper presents a framework for quality improvement on the neural model applied for fault detection purposes. In particular, the proposed approach starts with an adaptation of the modified quasi-outer-bounding algorithm towards non-linear neural network models. Subsequently, its convergence is proven using quadratic boundedness paradigm. The obtained algorithm is then equipped with the sequential D-optimum experimental design mechanism allowing gradual reduction of the neural model uncertainty. Finally, an emerging robust fault detection framework on the basis of the neural network uncertainty description as the adaptive thresholds is proposed.


Sign in / Sign up

Export Citation Format

Share Document