scholarly journals IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yun Ge ◽  
Juan Chen ◽  
Yanting Hu ◽  
Xinyi Chen ◽  
Man Huang

Interleukin- (IL-) 38 is an emerging cytokine with multiple functions involved in infection and immunity. However, the potential role of IL-38 in the host immune response during sepsis remains elusive. Herein, we investigated if macrophages in septic mice express IL-38, the molecular mechanisms behind its expression, and the downstream effects of its expression. In mouse peritoneal macrophages, lipopolysaccharide (LPS) upregulated IL-38 and its receptor IL-36R, and the resulting IL-38 shifted macrophages from a M1 to M2 phenotype. Moreover, exposure to IL-38 alone was sufficient to inhibit macrophage apoptosis and LPS-driven activation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome. These effects were partly abrogated by IL-38 downregulation. In septic mice, IL-38 markedly lowered serum concentrations of proinflammatory cytokines and greatly improved survival. Conversely, IL-38 blockade aggravated their mortality. Collectively, these findings present IL-38 as a potent immune modulator that restrains the inflammatory response by suppressing macrophage apoptosis and activation of the NLRP3 inflammasome. IL-38 may help protect organs from sepsis-related injury.

2016 ◽  
Vol 42 ◽  
pp. 37-42 ◽  
Author(s):  
Hiroki Goto ◽  
Ryusho Kariya ◽  
Kouki Matsuda ◽  
Eriko Kudo ◽  
Harutaka Katano ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Helena Kyunghee Kim ◽  
Wenjun Chen ◽  
Ana Cristina Andreazza

Mitochondrial dysfunction and activation of the inflammatory system are two of the most consistently reported findings in bipolar disorder (BD). More specifically, altered levels of inflammatory cytokines and decreased levels of mitochondrial complex I subunits have been found in the brain and periphery of patients with BD, which could lead to increased production of mitochondrial reactive oxygen species (ROS). Recent studies have shown that mitochondrial production of ROS and inflammation may be closely linked through a redox sensor known as nod-like receptor pyrin domain-containing 3 (NLRP3). Upon sensing mitochondrial release of ROS, NLRP3 assembles the NLRP3 inflammasome, which releases caspase 1 to begin the inflammatory cascade. In this review, we discuss the potential role of the NLRP3 inflammasome as a link between complex I dysfunction and inflammation in BD and its therapeutic implications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiu Cai ◽  
Zhi-yu Zhang ◽  
Jin-tao Yuan ◽  
Dickson Kofi Wiredu Ocansey ◽  
Qiang Tu ◽  
...  

Abstract Background Human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes are recognized as novel cell-free therapeutic agents for inflammatory bowel disease (IBD), a condition caused by dysregulated intestinal mucosal immunity. In this event, macrophage pyroptosis, a process of cell death following the activation of NLRP3 (NOD-like receptor family, pyrin domain-containing 3) inflammasomes, is believed to partially account for inflammatory reactions. However, the role of macrophage pyroptosis in the process of hucMSC-derived exosomes alleviating colitis remains unknown. This study aimed at exploring the therapeutic effect and mechanism of hucMSC-derived exosomes on colitis repair. Methods In vivo, we used BALB/c mice to establish a dextran sulfate sodium (DSS)-induced colitis model and administrated hucMSC-derived exosomes intravenously to estimate its curative effect. Human myeloid leukemia mononuclear (THP-1) cells and mouse peritoneal macrophages (MPMs) were stimulated with lipopolysaccharides (LPS) and Nigericin to activate NLRP3 inflammasomes, which simulated an inflammation environment in vitro. A microRNA mimic was used to verify the role of miR-378a-5p/NLRP3 axis in the colitis repair. Results hucMSC-derived exosomes inhibited the activation of NLRP3 inflammasomes in the mouse colon. The secretion of interleukin (IL)-18, IL-1β, and Caspase-1 cleavage was suppressed, resulting in reduced cell pyroptosis. The same outcome was observed in the in vitro cell experiments, where the co-culture of THP-1 cells and MPMs with hucMSC-derived exosomes caused decreased expression of NLRP3 inflammasomes and increased cell survival. Furthermore, miR-378a-5p was highly expressed in hucMSC-derived exosomes and played a vital function in colitis repair. Conclusion hucMSC-derived exosomes carrying miR-378a-5p inhibited NLRP3 inflammasomes and abrogated cell pyroptosis to protect against DSS-induced colitis.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Baolong Liu ◽  
Jiujiu Yu

The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yang Zhang ◽  
Weifang Liu ◽  
Yanqi Zhong ◽  
Qi Li ◽  
Mengying Wu ◽  
...  

NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2009 ◽  
Vol 6 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Yinan Wang ◽  
Xueling Cui ◽  
Guixiang Tai ◽  
Jingyan Ge ◽  
Nan Li ◽  
...  

2021 ◽  
Author(s):  
Zahra Heydarifard ◽  
Sevrin Zadheidar ◽  
Jila Yavarian ◽  
Somayeh Shatizadeh Malekshahi ◽  
Shirin Kalantari ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1552
Author(s):  
Maria Sebastian-Valverde ◽  
Giulio M. Pasinetti

As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.


Sign in / Sign up

Export Citation Format

Share Document