scholarly journals Antihyaluronidase and Alkaline Phosphatase (ALP) Activities of Medicinal Plants to Combat Echis carinatus Venom-Induced Toxicities

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Syeda Fatima ◽  
Nazia Aslam ◽  
Sofia Khalid ◽  
Kalim Ullah ◽  
Khizar Abbas ◽  
...  

Snakebite is one of the most neglected diseases of developing countries. Deaths due to snakebite envenoming are quite high in Pakistan, and many deaths are caused by Echis carinatus envenomation. Traditional use of medicinal plants against snakebites is a common practice in Pakistan due to countless benefits. The current study was performed with the objective to evaluate eighteen Pakistani medicinal plants inhibitory potential against hyaluronidase and alkaline phosphatase enzymes of Pakistani Echis carinatus venom. Hyaluronidase activity (0.2-1.6 mg/0.1 mL) and alkaline phosphatase activity (0.1-0.8 mg/0.1 mL) were measured in dose-dependent manner. Crude methanolic extracts of medicinal plants were used for in vitro investigation of their inhibitory activity against toxic enzymes. All active plants were fractioned using different solvents and were again analyzed for inhibitory activity of same enzymes. Results indicated all plants were able to neutralize hyaluronidase that Swertia chirayita (Roxb. ex Flem.) Karst., Terminalia arjuna Wight and Arn, Rubia cordifolia Thumb., and Matthiola incana (L.) R.Br. inhibited maximum hyaluronidase activity equivalent to standard reference ( p > 0.5 ). Pakistani medicinal plants are dense with natural neutralizing metabolites and other active phytochemicals which could inhibit hyaluronidase activity of Pakistani Echis carinatus venom. Further advanced studies at molecular level could lead us to an alternative for envenoming of Pakistani Echis carinatus venom.

2010 ◽  
Vol 5 (11) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Retno Widyowati ◽  
Yasuhiro Tezuka ◽  
Tatsurou Miyahara ◽  
Suresh Awale ◽  
Shigetoshi Kadota

In order to find antiosteoporotic agents from natural resources, 32 Indonesian medicinal plants were screened for their effects on osteoblast differentiation by using alkaline phosphatase (ALP) activity in MC3T3-E1 osteoblast cells as a marker. From the extract of Barleria lupulina, which showed the most potent activity, 13 iridoid glucosides, including three new ones [8- O-acetylipolamiidic acid (1), 8- O-acetyl-6- O-( p-methoxy- cis-cinnamoyl)shanzhiside (2), and 8- O-acetyl-6- O-( p-methoxy- trans-cinnamoyl)shanzhiside (3)] were identified. Among the 13 iridoid glucosides, ipolamiide (4) showed the most potent activity in a dose-dependent manner.


Planta Medica ◽  
2020 ◽  
Vol 86 (06) ◽  
pp. 387-394
Author(s):  
Mohammad Al-Amin ◽  
Nagla Mustafa Eltayeb ◽  
Chowdhury Faiz Hossain ◽  
Melati Khairuddean ◽  
Siti Sarah Fazalul Rahiman ◽  
...  

Abstract Zingiber montanum rhizomes are traditionally used for the treatment of numerous human ailments. The present study was carried out to investigate the inhibitory activity of the crude extract, chromatographic fractions, and purified compounds from Z. montanum rhizomes on the migration of MDA-MB-231 cells. The effect of the extract on cell migration was investigated by a scratch assay, which showed significant inhibition in a concentration-dependent manner. Vacuum liquid chromatography on silica gel afforded four fractions (Frs. 1 – 4), which were tested on cell migration in the scratch assay. Frs. 1 and 2 showed the most significant inhibition of MDA-MB-231 cell migration. The effect of the most potent fraction (Fr. 2) was further confirmed in a transwell migration assay. The study of Frs. 1 and 2 by gelatin zymography showed significant inhibition of MMP-9 enzyme activity. Chromatographic separation of Frs. 1 and 2 afforded buddledone A (1), zerumbone (2), (2E,9E)-6-methoxy-2,9-humuradien-8-one (3), zerumbone epoxide (4), stigmasterol (5), and daucosterol (6). In a cell viability assay, compounds 1 – 4 inhibited the viability of MDA-MB-231 cells in a concentration-dependent manner. The study of buddledone A (1) and zerumbone epoxide (4) on cell migration revealed that 4 significantly inhibited the migration of MDA-MB-231 cells in both scratch and transwell migration assays. The results of the present study may lead to further molecular studies behind the inhibitory activity of zerumbone epoxide (4) on cell migration and support the traditional use of Z. montanum rhizomes for the treatment of cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nazia Aslam ◽  
Syeda Fatima ◽  
Sofia Khalid ◽  
Shahzad Hussain ◽  
Mughal Qayum ◽  
...  

Echis carinatus is one of the highly venomous snakes of Pakistan that is responsible for numerous cases of envenomation and deaths. In Pakistan, medicinal plants are commonly used traditionally for snakebite treatment because of their low cost and easy availability in comparison with antivenom. The current research is aimed at evaluating the inhibitory activity of Pakistani medicinal plants against acetylcholinesterase and 5 ′ -nucleotidases present in Echis carinatus venom. Acetylcholinesterase and 5 ′ -nucleotidase enzymatic assays were performed at different venom concentrations to check the activity of these enzymes. Methanolic extracts from different parts of plants were used for in vitro determination of their inhibitory activity against 5 ′ -nucleotidases in snake venom. Active methanolic extracts were subsequently fractioned using different solvents, and these fractions were also assessed for their anti-5 ′ -nucleotidase activity. Results of this study exhibited that Eugenia jambolana Willd. ex O. Berg, Rubia cordifolia L., Trichodesma indicum (L.) R. Br., Calotropis procera (Wild.) R. Br., Curcuma longa L., and Fagonia arabica L. were able to significantly ( p > 0.5 ) neutralize the 5 ′ -nucleotidase activity by 88%, 86%, 86%, 85%, 83.7%, and 83%, respectively, compared with a standard antidote (snake venom antiserum). Thus, this study indicates that these plants possess the potential to neutralize one of the toxic enzymatic components of Echis carinatus venom and hence can help to augment the future efforts of developing alternative therapy for the management of snakebites.


2018 ◽  
Vol 16 (S1) ◽  
pp. S119-S129
Author(s):  
I. Namoune ◽  
B. Khettal ◽  
A.M. Assaf ◽  
S. Elhayek ◽  
L. Arrar

Marrubium vulgare (Lamiaceae) is frequently used in traditional medicine to treat many illnesses from ancient times. Its beneficial effects include antibacterial, antioedematogenic, and analgesic activities. This study was designed to evaluate the antioxidant and anti-inflammatory activities of organic and aqueous extracts of the leaves, the flowers, the stems, and the roots of Marrubium vulgare. The total phenolic and flavonoid contents as well as the antioxidant and the anti-inflammatory effects of methanol, chloroform, ethyl acetate, and aqueous extracts have been investigated by using different in-vitro methods. It was found that the ethyl acetate extract from Marrubium vulgare stems had the highest total phenolic content, while the ethyl acetate extract from the leaves yielded a high concentration of flavonoids. The ethyl acetate extract from the stems exhibited the highest activity in scavenging of 2,2-diphenyl- 1-picrylhydrazyl (DPPH), as well as in protecting erythrocytes. The leaves aqueous extract exhibited the highest ferrous chelating activity and its methanolic extract was found to be the strongest inhibitor of lipid peroxidation in β-carotene bleaching assay. The leaves chloroform extracts as well as the flowers methanol, chloroform, and ethyl acetate extracts were found to decrease the pro-inflammatory tumor necrosis factor alpha (TNF-α) cytokine levels in a dose-dependent manner. On the other hand, the flowers methanolic extract and the leaves methanol, ethyl acetate, and aqueous extracts decreased the interleukin-1 beta (IL- 1β) release. It was also found that the methanol extract from the flowers and the chloroform extract from the stems of Marrubium vulgare inhibited interleukin-8 (IL-8) release. This study provides a scientific basis for the traditional use of Marrubium vulgare as an anti-inflammatory agent and for the plant to be considered as an important resource of natural antioxidants.


2018 ◽  
Vol 15 (7) ◽  
pp. 796-812
Author(s):  
Saliha Bouknana ◽  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Mohamed Bnouham

Author(s):  
K. Amala ◽  
R. Ilavarasan ◽  
R. Arunadevi ◽  
S. Amerjothy

<p><strong>Objective: </strong>The plant of <strong><em>Epaltes</em></strong><strong> <em>divaricata </em>(L.) </strong>Cass.<strong> Traditionally used for jaundice. </strong>The present work aimed to investigate the hepatoprotective activity of alcohol and aqueous extract of the whole plant against paracetamol-induced hepatotoxicity in rats to substantiate its traditional use.</p><p><strong>Methods: </strong>The alcohol and aqueous (200 and 400 mg/kg) extract of <em>Epaltes divaricata</em> prepared by cold maceration were administered orally to the animals with hepatotoxicity induced by paracetamol (1000 mg/kg). Silymarine (40 mg/k) was given as reference standard. Hepatoprotective activity was assessed by estimating marker enzymes and by histopathological studies.</p><p><strong>Results: </strong>Both alcohol and aqueous (200 and 400 mg/kg) extract treatment significantly restored the paracetamol-induced elevations in levels of serum enzymes aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphate (ALP) and total bilirubin in a dose-dependent manner. Histopathological examination revealed that the treatment attenuated the paracetamol-induced damage to the liver. The hepatoprotective effect of both extracts was comparable to that of the standard hepatoprotective agent, silymarin.</p><p><strong>Conclusion: </strong>The alcohol and aqueous extract of <em>E. divaricata</em> exhibited hepatoprotective effect against paracetamol-induced liver damage in rats. This study also validated their traditional medicinal use in jaundice.</p>


Author(s):  
Divya Gupta ◽  
Mukesh Kumar ◽  
Vishal Gupta

Objective: To investigate the solvent-dependent antimicrobial activity and phytochemical analysis of extracts of Euphorbia hirta (leaves and flowers) and Murraya koenigii (leaves), as well as to evaluate the synergistic activity of these medicinal extracts with suitable antibiotic discs and antibiotics susceptibility of selected pathogenic microorganisms.Methods: The antimicrobial activity of the medicinal extracts was screened through agar well diffusion method and antibiotics susceptibility of selected microorganisms was investigated using disc diffusion method. A combined agar well diffusion and disc diffusion methods were used for the determination of synergistic activities of the extracts with antibiotic discs.Results: Among the different solvents, ethanol had maximum zone of inhibition against the test pathogens. Ethanolic leaf extracts of E. hirta exhibited the highest inhibitory activity against Candida albicans and Staphylococcus aureus with minimum inhibitory concentration value of 12.5 mg/mL and 25.0 mg/mL, respectively. Antimicrobial assay revealed that E. hirta extracts were active against all tested Gram-negative bacteria. However, none of the plant extracts had inhibitory activity against Gram-positive bacterium Propionibacterium acnes. Phytochemical screening for both the extracts from E. hirta revealed the presence of steroid, tannin, terpenoids, carbohydrates, alkaloid, flavonoid, diterpene, and glycoside, whereas M. koenigii extract was rich in saponins, protein, steroid, tannin, carbohydrates, alkaloid, flavonoid, and glycoside.Conclusion: The present study proposes that E. hirta and M. koenigii extracts are excellent sources of natural bioactive compounds that could be used as potent antimicrobial drugs to counter the emerging problem of antibiotic resistance of pathogenic microorganisms.


Author(s):  
Aisha Abdulrazak ◽  

The search for antimalarial compounds has been necessitated by the resistance of Plasmodium falciparum to almost all antimalarial drugs. The aim of this research was to determine in-vitro antimalarial activity of extracts of some indigenous plants species in Kebbi State. Plant extraction was carried-out by maceration using ethanol and water as solvent. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of P. falciparum using WHO method of in-vitro micro test. Phytochemical screening was also carried out on the extract to deduce the active chemicals present in the plant extract. All plant extracts demonstrate dose dependent antimicrobial activities with IC50 Less than 50%. However highest growth inhibition of the P. falciparum was demonstrated by aqueous and ethanol extract of A. indica with IC50 7.4µg/ml and 8.6µg/ml respectively followed by ethanol and aqueous extract of C. occidentalis with IC50 15.3µg/ml and 18.0µg/ml respectively. Least antimalarial activity was demonstrated by aqueous extract of M. oleifera with IC50 33.5µg/ml while ethanolic extract of M. oleifera demonstrated IC50 of 20.50µg/ml. M. indica ethanolic and aqueous extract also demonstrated moderate antimalarial activity with IC50 18.8µg/ml and 24.5µg/ml. The phytochemical screening of medicinal plants showed the presence of tannins, saponins, alkaloids, flavonoid, phenol and cardiac glycosides in the extracts, which may be responsible for the antiplasmodial activity. This result justifies the traditional use of the plant in malaria treatment and further research is suggested to identify and characterize the active principles from the plants. Keywords: Antimalaria, Invitro, Medicinal Plants, Malaria, Kebbi


Sign in / Sign up

Export Citation Format

Share Document