scholarly journals Influence of Classical Massage on Biochemical Markers of Oxidative Stress in Humans: Pilot Study

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zofia Skubisz ◽  
Daria Kupczyk ◽  
Aleksander Goch ◽  
Marcin Siedlaczek ◽  
Łukasz Sielski ◽  
...  

Classical massage is one of the most popular forms of conservative treatment in various diseases. Despite the wide scope of research, the mechanisms of massage are not fully known and understood. Apart from the well-described effects on individual body systems, there are few scientific reports on the effects of massage on the human body at the subcellular level. The study was designed to assess changes in oxidative stress parameters in healthy volunteers after a single session of classical massage. 29 healthy volunteers aged 22.24 ± 3.64 participated in the study. Before and 30 minutes after the massage procedures, blood samples were taken by experienced personnel. Biochemical markers of oxidative homeostasis were assessed with highly specific methods for each parameter: oxidase ceruloplasmin, glutathione, malondialdehyde, glutathione peroxidase, glutathione S-transferase, and superoxide dismutase. The study demonstrates that massage therapy caused statistically significant decrease in the concentration of glutathione peroxidase (red blood cells) and increase in the level of glutathione peroxidase (plasma), superoxide dismutase, and malondialdehyde. In contrast, statistically significant changes in the hematocrit, glutathione, NO2-/NO3-, and oxidase ceruloplasmin were not observed. The results show that complex influence of classical massage therapy on human organism may be reflected in parameters of the oxidative stress. To understand this mechanism clearly, further research is needed.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Katarzyna Knapik ◽  
Karolina Sieroń ◽  
Ewa Wojtyna ◽  
Grzegorz Onik ◽  
Ewa Romuk ◽  
...  

Objective. The main aim of the study was an assessment of the influence of rapid weight loss on oxidative stress parameters in judokas differing in weight reduction value. Materials and Methods. The study included 30 judokas with an age range of 18-30 years (mean age: 22.4±3.40 years). Enzymatic and nonenzymatic antioxidative markers, lipid peroxidation markers, and total oxidative stress were assessed three times: one week before a competition (the first stage), after gaining the desired weight (the second stage), and one week after the competition (the third stage). Results. Between the first and the second stage, the concentration of lipid hydroperoxides (LPH) decreased significantly. The superoxide dismutase (SOD), copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD), ceruloplasmin (CER), malondialdehyde (MDA), LPH, and total oxidative stress (TOS) concentrations were the lowest one week after the competition. Linear regression indicated that the emphases on increased weight reduction increased the activity of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and protein sulfhydryl (PSH) between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD, Mn-SOD, LPH, MDA, and TOS in comparison to low and high reductions. An opposite relation was observed in PSH. In judokas, the precompetitional weight reduction range was 0.44-6.10% (mean: 2.93%±1.76%) of the initial body weight. Concentrations of superoxide dismutase (SOD; p<.01), manganese-dependent superoxide dismutase (Mn-SOD; p<.001), and ceruloplasmin (CER; p<.05) decreased between the first and the third stage of the study as well between the second and third one. Before competitions, a decrease in lipid hydroperoxide (LPH; p<.01) concentration was observed. A reduction of malondialdehyde (MDA; p<.05), LPH (p<.01), and total oxidative stress (TOS; p<.05) levels between the first and the final stage occurred. The increase in weight reduction was linearly correlated with the rise of glutathione peroxidase (GPx; p<.05), glutathione reductase (GR; p<.05), glutathione S-transferase (GST; p<.05), and protein sulfhydryl (PSH; p<.05) concentrations between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD (p<.05), Mn-SOD (p<.05), LPH (p<.05), MDA (p<.05), and TOS (p<.05) in comparison to low and high reductions. An opposite relation was observed in PSH (p<.005). Conclusions. The effect of weight reduction in judo athletes on prooxidative-antioxidative system diversity depends on the weight reduction value.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 595
Author(s):  
Amani M. T. Gusti ◽  
Safaa Y. Qusti ◽  
Eida M. Alshammari ◽  
Eman A. Toraih ◽  
Manal S. Fawzy

Oxidative stress and antioxidants play an important role in obesity etiopathology. Genetic variants, including single nucleotide polymorphisms (SNPs) of the antioxidant-related genes, may impact disease risk in several populations. This preliminary study aimed to explore the association of 12 SNPs related to superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) genes with obesity susceptibility in a Saudi population. A total of 384 unrelated participants, including 154 (40.1%) obese individuals, were enrolled. TaqMan OpenArray Genotyping assays were used. Six SNPs were significantly more prevalent in obese cohorts: (1) GSTM1 rs1056806*C/T; (2) SOD1 rs2234694*A; (3) SOD2 rs4880*G; (4) SOD3 rs2536512*A; (5) GPX1 rs1800668*A; (6) NOS3 rs1799983*G. Four SNPs were associated with higher obesity risk under heterozygote and dominant models for GSTM1 rs1056806 (C/T), homozygote model for SOD2 rs4880 (A/G), and homozygote and recessive models for GPX1 rs1800668 (A/G). In contrast, SOD3 rs2536512 (A/G) were less likely to be obese under heterozygote and dominant models. The CGAG, CAAA, TGGG, and CGAG combined genotypes showed a higher risk of obesity. In conclusion, the present results suggest that oxidative-stress-related genetic determinants could significantly associate with obesity risk in the study population.


Author(s):  
Manpreet Kaur ◽  
Saurabh Sharma ◽  
Sahiba Kukreja ◽  
Jasleen Kaur ◽  
Roopam Bassi

<p class="abstract"><strong>Background:</strong> Psoriasis is a well-recognized chronic inflammatory papulosquamous disorder characterized by the formation of salmon colored papules and plaques with silvery white scales. The aim of this study was to do a comparative evaluation of the parameters of oxidative stress, namely glutathione peroxidase, malondialdehyde and superoxide dismutase in patients of psoriasis with normal healthy subjects</p><p class="abstract"><strong>Methods:</strong> 60 subjects in the age group of 30-70 years were included in the study; Group A consisted of 30 newly diagnosed psoriasis patients presenting to the Dermatology OPD and Group B consisted of 30 normal healthy individuals. Thorough history taking and clinical examination were done. The punch biopsy was performed for histopathological examination and markers of oxidative stress were measured in each case and these values were then compared to healthy controls and statistical analysis was performed.<strong></strong></p><p class="abstract"><strong>Results:</strong> On comparison of the two groups, the levels of anti-oxidants superoxide dismutase and glutathione peroxidase were found to be decreased in psoriasis patients (168.46±51.89 U/ml and 4121.63±1812.53 U/ml respectively) as compared to controls (237±39.30 U/ml and 8435±1397.54 U/ml respectively) which was statistically highly significant (p &lt;0.001) and the level of pro-oxidant malondialdehyde was found to be increased in patients of psoriasis (0.42±0.13 nmol/ml) in contrast to controls (0.08±0.06 nmol/ml)which was also statistically highly significant (p &lt;0.001).</p><p><strong>Conclusions:</strong> Keeping in consideration the increased oxidative stress in the patients of psoriasis, the anti-oxidant drugs can form an important part of the therapeutic ladder of psoriasis. </p>


2018 ◽  
Vol 34 (6) ◽  
pp. 406-413 ◽  
Author(s):  
Devrim Saribal ◽  
Eyup Murat Kanber ◽  
Fatma Sinem Hocaoglu-Emre ◽  
Mehmet C Akyolcu

Background Etiology of the varicose veins is still partly known. It has been proposed that varicose veins formation might be a cause of the oxidative stress and/or cause from genetical reasons. Method The levels of antioxidant defense system enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and an oxidative stress indicator, malondialdehyde, were measured in saphenous vein samples of varicose veins patients. Additionally, genetical polymorphism of glutathione S-transferase theta-1 has been studied. Result In this study, measurements revealed significant increase in catalase and malondialdehyde levels in the patient group, whereas superoxide dismutase and glutathione peroxidase and glutathione S-transferase enzyme activity and comparison of the null mutation frequency in the glutathione S-transferase theta-1 gene did not show a statistically significant difference. Conclusion We propose that the increase in catalase and malondialdehyde activities in our patient group may be related to each other. Increase in catalase levels, an antioxidant enzyme might be a compensatory response to the increase in malondialdehyde levels, an oxidative molecule.


2018 ◽  
Vol 34 (9) ◽  
pp. 596-608 ◽  
Author(s):  
Luqman Aribidesi Olayaki ◽  
Isiaka Abdullateef Alagbonsi ◽  
Amin Halimat Abdulrahim ◽  
Wale Johnson Adeyemi ◽  
Muftiat Bakare ◽  
...  

We investigated the effects of melatonin on sperm parameters and some biochemical markers in lead-exposed male Wistar rats. Lead (50 mg/kg bw/day) and/or melatonin (4 mg/kg or 10 mg/kg bw/day) was administered for 4 weeks, while 2-week lead exposure was preceded by or followed by 2-week treatment with both doses of melatonin in other groups. Lead reduced glutathione, catalase, adjusted testes weight, semen parameters but did not change malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, and total antioxidant capacity. Though independent of prolactin, lead-induced gonadotoxicity was both centrally and peripherally mediated, as it reduced gonadotropin-releasing hormone and testosterone levels, while gonadotropin levels did not change significantly probably due to negative feedback by elevated estradiol. However, pre-, simultaneous, or posttreatment of lead-exposed rats with melatonin reduced MDA, SOD, and estradiol but dose-dependently increased other parameters. Conclusively, lead causes male gonadotoxicity through oxidative stress and endocrine mechanisms, and these could be dose-dependently prevented and ameliorated by melatonin.


Author(s):  
L. K. Parkhomenko ◽  
◽  
L. A. Strashok ◽  
S. I. Turchina ◽  
G. V. Kosovtsova ◽  
...  

Recently, interest in the problem of free radical oxidation in biological membranes, which is directly related to both the normal functioning of cells and the occurrence, course and outcome of many pathological conditions, has increased again in clinical medicine. The aim was to determine the role and impact of antioxidant defense in boys with hypoandrogenism. The study involved 75 adolescents with hypoandrogenism aged 13–18 years, who underwent a complex of clinical and laboratory examinations. All patients were conducted complex of anthropometric research and determination of the degree of delayed puberty, laboratory and instrumental examination. Free radical oxidation was determined by the levels of malondialdehyde, conjugated dienes, carbonated proteins, superoxide dismutase and catalase in the serum, and restored glutathione and glutathione peroxidase in whole blood. Based on their determination, the coefficient of oxidative stress was calculated. Statistical processing of results was performed using parametric and nonparametric methods. The study of indicators of the free radical oxidation process found that adolescents with hypoandrogenism have multidirectional changes in the oxidation of proteins and lipids, namely: the level of conjugated dienes increases, the concentration of malondialdehyde remains at the level of the control group, and the level of carbonated proteins tends to decrease. As for the activity of antioxidant protection enzymes, a significant decrease in the level of glutathione peroxidase was detected, while the level of superoxide dismutase and catalase remained at the level of normative indicators. Oxidative stress accompanies and is one of the pathogenetic links in the formation or maintenance of the state of hypoandrogenism in boys. This requires the use of antioxidants, the complex of which must be selected individually.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


Author(s):  
Juana Rosado-Pérez ◽  
Osvaldo D. Castelán-Martínez ◽  
Abril J. Mújica-Calderón ◽  
Martha A. Sánchez-Rodríguez ◽  
Víctor Manuel Mendoza-Núñez

Background: This study aimed to synthesize the evidence of the effect of practicing Tai Chi on oxidative stress markers (OxSM). Methods: This systematic review and meta-analysis was conducting using the MEDLINE, Cochrane Library, ScienceDirect, Scopus, Epistemonikos, Lilacs, and Ovid databases to identify randomized (RCT) and non-randomized (NRCT) clinical trials that evaluated the Tai Chi effect on OxSM compared to sedentary behavior, walking or yoga. Pooled mean differences (MDs) with 95% confidence intervals (95%CI) were estimated using the inverse variance method to determine the effect of Tai Chi on OxSM. PROSPERO register: CRD42019138362. Results: Five RCT and five NRCT were included. Compared to sedentary behavior, regular Tai Chi practice increases the levels of the enzymes superoxide dismutase (MD = 34.97 U/mL, (95%CI, 9.45 to 60.48), 344 participants) and catalase (MD = 15.63 U/mL, (95%CI, 4.05 to 27.22), 110 participants), as well as reducing the levels of lipoperoxides (MD = −0.02 µmol/L, (95%CI, −0.04 to −0.00), 234 participants). For comparisons with walking or yoga, only one study per activity was identified comparing the effect on OxSM. Conclusions: Regular Tai Chi practice increases the levels of superoxide dismutase and catalase, as well as reducing the levels of lipoperoxides. More studies are necessary to determine the effect of Tai Chi on OxSM when compared to other physical activities.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


Sign in / Sign up

Export Citation Format

Share Document