scholarly journals Comparison of Diagnosis Accuracy between a Backpropagation Artificial Neural Network Model and Linear Regression in Digestive Disease Patients: an Empirical Research

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Wei ◽  
Xu Yang

Introduction. A Noninvasive diagnosis model for digestive diseases is the vital issue for the current clinical research. Our systematic review is aimed at demonstrating diagnosis accuracy between the BP-ANN algorithm and linear regression in digestive disease patients, including their activation function and data structure. Methods. We reported the systematic review according to the PRISMA guidelines. We searched related articles from seven electronic scholarly databases for comparison of the diagnosis accuracy focusing on BP-ANN and linear regression. The characteristics, patient number, input/output marker, diagnosis accuracy, and results/conclusions related to comparison were extracted independently based on inclusion criteria. Results. Nine articles met all the criteria and were enrolled in our review. Of those enrolled articles, the publishing year ranged from 1991 to 2017. The sample size ranged from 42 to 3222 digestive disease patients, and all of the patients showed comparable biomarkers between the BP-ANN algorithm and linear regression. According to our study, 8 literature demonstrated that the BP-ANN model is superior to linear regression in predicting the disease outcome based on AUROC results. One literature reported linear regression to be superior to BP-ANN for the early diagnosis of colorectal cancer. Conclusion. The BP-ANN algorithm and linear regression both had high capacity in fitting the diagnostic model and BP-ANN displayed more prediction accuracy for the noninvasive diagnosis model of digestive diseases. We compared the activation functions and data structure between BP-ANN and linear regression for fitting the diagnosis model, and the data suggested that BP-ANN was a comprehensive recommendation algorithm.

Author(s):  
Aliva Bera ◽  
D.P. Satapathy

In this paper, the linear regression model using ANN and the linear regression model using MS Excel were developed to estimate the physico-chemical concentrations in groundwater using pH, EC, TDS, TH, HCO3 as input parameters and Ca, Mg and K as output parameters. A comparison was made which indicated that ANN model had the better ability to estimate the physic-chemical concentrations in groundwater. An analytical survey along with simulation based tests for finding the climatic change and its effect on agriculture and water bodies in Angul-Talcher area is done. The various seasonal parameters such as pH, BOD, COD, TDS,TSS along with heavy elements like Pb, Cd, Zn, Cu, Fe, Mn concentration in water resources has been analyzed. For past 30 years rainfall data has been analyzed and water quality index values has been studied to find normal and abnormal quality of water resources and matlab based simulation has been done for performance analysis. All results has been analyzed and it is found that the condition is stable. 


Author(s):  
Qing Zhang ◽  
Heng Li ◽  
Xiaolong Zhang ◽  
Haifeng Wang

To achieve a more desirable fault diagnosis accuracy by applying multi-domain features of vibration signals, it is significative and challenging to refine the most representative and intrinsic feature components from the original high dimensional feature space. A novel dimensionality reduction method for fault diagnosis is proposed based on local Fisher discriminant analysis (LFDA) which takes both label information and local geometric structure of the high dimensional features into consideration. Multi-kernel trick is introduced into the LFDA to improve its performance in dealing with the nonlinearity of mapping high dimensional feature space into a lower one. To obtain an optimal diagnosis accuracy by the reduced features of low dimensionality, binary particle swarm optimization (BPSO) algorithm is utilized to search for the most appropriate parameters of kernels and K-nearest neighbor (kNN) recognition model. Samples with labels are used to train the optimal multi-kernel LFDA and kNN (OMKLFDA-kNN) fault diagnosis model to obtain the optimal transformation matrix. Consequently, the trained fault diagnosis model implements the recognition of machinery health condition with the most representative feature space of vibration signals. A bearing fault diagnosis experiment is conducted to verify the effectiveness of proposed diagnostic approach. Performance comparison with some other methods are investigated, and the improvement for fault diagnosis of the proposed method are confirmed in different aspects.


2021 ◽  
Author(s):  
Wenwen Huang ◽  
Miaomiao Lu ◽  
Yuxuan Zeng ◽  
Mengyue Hu ◽  
Yi Xiao

Abstract Background: The technical and tactical diagnosis of table tennis is extremely important for the preparation of matches, and there is a nonlinear relationship between athletes’ performance and their sports quality. As the neural network model has high nonlinear dynamic processing ability and has high fitting accuracy, the main purpose of this study was to establish a technical and tactical diagnosis model of table tennis matches based on a neural network to diagnose the influence of athletes’ techniques and tactics on the competition result. Methods: A three-layer back propagation neural network model for table tennis match diagnosis were established. The 30 technical and tactical analysis indexes that are closely related to winning a competition were selected based on the double three-phase evaluation method. And 100 table tennis matches were selected as data sample, of which 70 matches were taken as training sample to establish the diagnostic model, the other 30 matches were used to test the validity of the diagnostic model.Results: The technical and tactical diagnosis model of table tennis matches based on BP neural network had a high precision up to 99.997% and highly efficient in fitting (R2 = 0.99). It had a good ability to diagnose the technical and tactical abilities of table tennis players. The technical and tactical diagnosis results showed that the scoring rate of the fourth stroke of Harimoto had the greatest influence on the winning probability.Conclusion: The technical and tactical diagnosis model of table tennis matches based on BP neural network had a high precision and highly efficient in fitting. By using this model, the weights of the influence of athletes’ technical and tactical indexes on the winning probability of the competition can be calculated, which provides a valuable reference for formulating targeted training plans for players.


2021 ◽  
Vol 1 ◽  
Author(s):  
Jianhu Zhang ◽  
Xiuli Zhang ◽  
Yuan Sh ◽  
Benliang Liu ◽  
Zhiyuan Hu

Background: Parkinson’s disease (PD), Alzheimer’s disease (AD) are common neurodegenerative disease, while mild cognitive impairment (MCI) may be happened in the early stage of AD or PD. Blood biomarkers are considered to be less invasive, less cost and more convenient, and there is tremendous potential for the diagnosis and prediction of neurodegenerative diseases. As a recently mentioned field, artificial intelligence (AI) is often applied in biology and shows excellent results. In this article, we use AI to model PD, AD, MCI data and analyze the possible connections between them.Method: Human blood protein microarray profiles including 156 CT, 50 MCI, 132 PD, 50 AD samples are collected from Gene Expression Omnibus (GEO). First, we used bioinformatics methods and feature engineering in machine learning to screen important features, constructed artificial neural network (ANN) classifier models based on these features to distinguish samples, and evaluated the model’s performance with classification accuracy and Area Under Curve (AUC). Second, we used Ingenuity Pathway Analysis (IPA) methods to analyse the pathways and functions in early stage and late stage samples of different diseases, and potential targets for drug intervention by predicting upstream regulators.Result: We used different classifier to construct the model and finally found that ANN model would outperform the traditional machine learning model. In summary, three different classifiers were constructed to be used in different application scenarios, First, we incorporated 6 indicators, including EPHA2, MRPL19, SGK2, to build a diagnostic model for AD with a test set accuracy of up to 98.07%. Secondly, incorporated 15 indicators such as ERO1LB, FAM73B, IL1RN to build a diagnostic model for PD, with a test set accuracy of 97.05%. Then, 15 indicators such as XG, FGFR3 and CDC37 were incorporated to establish a four-category diagnostic model for both AD and PD, with a test set accuracy of 98.71%. All classifier models have an auc value greater than 0.95. Then, we verified that the constructed feature engineering filtered out fewer important features but contained more information, which helped to build a better model. In addition, by classifying the disease types more carefully into early and late stages of AD, MCI, and PD, respectively, we found that early PD may occur earlier than early MCI. Finally, there are 24 proteins that are both differentially expressed proteins and upstream regulators in the disease group versus the normal group, and these proteins may serve as potential therapeutic targets and targets for subsequent studies.Conclusion: The feature engineering we build allows better extraction of information while reducing the number of features, which may help in subsequent applications. Building a classifier based on blood protein profiles using deep learning methods can achieve better classification performance, and it can help us to diagnose the disease early. Overall, it is important for us to study neurodegenerative diseases from both diagnostic and interventional aspects.


Author(s):  
George S. Atsalakis ◽  
Kimon P. Valavanis ◽  
Constantin Zopounidis ◽  
Dimitris Nezis

Accurate forecasting of the house sale value market is important for individual investors, business investors, banks and mortgage companies. This chapter uses fundamentals of Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs) to derive and implement a hybrid, genetically evolved feedforward ANN model that predicts next month house sale prices. Derived model results are compared with results obtained using a linear regression model and an Adaptive Neuro Fuzzy Inference System (ANFIS). The proposed model returned lower Root Mean Square Error (RMSE), Absolute Mean Error (MAE), Mean Square Error (MSE) and Mean Absolute Percent Error (MAPE) results compared with the linear regression and ANFIS models. For case studies real monthly data of USA housing prices from 1963 to 2007 were used.


2020 ◽  
Vol 857 ◽  
pp. 266-272
Author(s):  
Bushra S. Albusoda ◽  
Dhurgham A. Al-Hamdani ◽  
Mohammed F. Abbas

Dry density modeling is a valuable issue. Artificial neural networks (ANNs) have been used in many problems in geotechnical engineering and have demonstrated great success. In this paper, the ANN model is proposed to predict the dry density of the soil. The developed model is managed by the Matlab Neural Network Interface (R2016a). To create the ANN model, liquid limit, plastic limit, plasticity index, moisture content, specific gravity, finer accuracy than sieve 200, total suspended solids, organic and SO3 were selected and used as input parameters. There are (9, 6,5 and 3) nodes, (10) nodes and (1) node used for input, hidden layers and output layers, respectively. The value of dry density obtained from three sources was sympathetic. The first source is the experimental results of 99 soil samples conducted in Al-Najaf Institution laboratory for this study. The second source was to propose the expected dry density using multiple linear regression analysis (MLRA) on the samples used in the first source; The results show, that the prediction of the use of ANNs was closely consistent with the experimental data. Correlation coefficient (R2) and mean square error (MSE) were 0.97368 and 3.19474 10-3, respectively. The observed results of the proposed system were very comparable with those obtained from empirical analysis and the prediction obtained from multiple linear regression analysis, where the advanced ANN approach is applicable.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 145 ◽  
Author(s):  
Viet Tra ◽  
Bach-Phi Duong ◽  
Jae-Young Kim ◽  
Muhammad Sohaib ◽  
Jong-Myon Kim

This paper proposes a reliable fault diagnosis model for a spherical storage tank. The proposed method first used a blind source separation (BSS) technique to de-noise the input signals so that the signals acquired from a spherical tank under two types of conditions (i.e., normal and crack conditions) were easily distinguishable. BSS split the signals into different sources that provided information about the noise and useful components of the signals. Therefore, an unimpaired signal could be restored from the useful components. From the de-noised signals, wavelet-based fault features, i.e., the relative energy (REWPN) and entropy (EWPN) of a wavelet packet node, were extracted. Finally, these features were used to train one-against-all multiclass support vector machines (OAA MCSVMs), which classified the instances of normal and faulty states of the tank. The efficiency of the proposed fault diagnosis model was examined by visualizing the de-noised signals obtained from the BSS method and its classification performance. The proposed fault diagnostic model was also compared to existing techniques. Experimental results showed that the proposed method outperformed conventional techniques, yielding average classification accuracies of 97.25% and 98.48% for the two datasets used in this study.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jintao Wang ◽  
Mingxia Shen ◽  
Longshen Liu ◽  
Yi Xu ◽  
Cedric Okinda

Digestive diseases are one of the common broiler diseases that significantly affect production and animal welfare in broiler breeding. Droppings examination and observation are the most precise techniques to detect the occurrence of digestive disease infections in birds. This study proposes an automated broiler digestive disease detector based on a deep Convolutional Neural Network model to classify fine-grained abnormal broiler droppings images as normal and abnormal (shape, color, water content, and shape&water). Droppings images were collected from 10,000 25-35-day-old Ross broiler birds reared in multilayer cages with automatic droppings conveyor belts. For comparative purposes, Faster R-CNN and YOLO-V3 deep Convolutional Neural Networks were developed. The performance of YOLO-V3 was improved by optimizing the anchor box. Faster R-CNN achieved 99.1% recall and 93.3% mean average precision, while YOLO-V3 achieved 88.7% recall and 84.3% mean average precision on the testing data set. The proposed detector can provide technical support for the detection of digestive diseases in broiler production by automatically and nonintrusively recognizing and classifying chicken droppings.


Sign in / Sign up

Export Citation Format

Share Document