scholarly journals Effect of Particle Size and Sintering Temperature on the Formation of Mullite from Kyanite and Aluminum Mixtures

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. R. Barrientos-Hernández ◽  
M. Pérez-Labra ◽  
A. Lobo-Guerrero ◽  
M. Reyes-Pérez ◽  
J. C. Juárez-Tapia ◽  
...  

The effect of particle size and sintering temperature of the mixtures of kyanite and metallic aluminum related to the thermal transformation of kyanite into primary mullite and free silica was studied. In addition, the reaction between α-Al2O3 (in situ produced by aluminum oxidation) and the silica was obtained in cristobalite structure from kyanite to obtain secondary mullite. The kyanite powders were milled by 0.5, 3, 6, and 12 hours and then were mixed with aluminum powder, which were previously milled by 3 hours. After that, the powders were characterized by X-ray diffraction technique (XRD), scanning electronic microscopy (SEM), differential thermal analysis (DTA), and thermogravimetric analysis (TGA), and the particle size was determined in a centrifugal analyzer particle size Shimadzu model SA-CP4. The mixed powders were pressed uniaxially into cylindrical samples (compacts), and then sintering was conducted at 1100, 1200, 1300, 1400, 1500, and 1600°C; these samples were characterized by XRD, SEM, and thermodilatometry analysis (TD); density and open porosity measurements were performed by the Archimedes method. The samples were thermally etched to observe the microstructure, which consisted of mullite equiaxial grains contained in a glassy phase. It was observed that the nonmilled kyanite mineral becomes into mullite plus silica at temperatures between 1400 and 1500°C. When the particle size was reduced at sizes less than 1 µm, the transformation temperature was low until 200°C; the X-ray patterns of the sintered samples at 1400°C, ground for 6 hours, showed mullite peaks with small reflections of cristobalite and α-Al2O3, and these samples exhibited high density and low open porosity.

2014 ◽  
Vol 906 ◽  
pp. 18-24 ◽  
Author(s):  
Bao Lin Zhang ◽  
Bin Bin Zhang ◽  
Ning Ning Wang ◽  
Jing Ming Fei

The effect of milling time and sintering process on the dielectric properties of BaTiO3-based X9R ceramics was investigated. The characterization of the raw powders and the sintered ceramic was carried out by X-ray diffraction and scanning electron microscopy. The particle size distribution of the mixed powders was examined by Laser Particle Size Analyzer. The results shown that with the milling time extended, the Cruie Peak was depressed, or even disappeared. Moreover, with the rise of sintering temperature, the dielectric constant of the ceramics increased and the dielectric loss decreased gradually. Eventually, by milling for 11h and sintering at 1090°Cfor 2h, good dielectric properties were obtained, which were ε25°C≥ 2526, εr/εr25°C≤± 12% (–55~200°C), tanδ≤1.12% (25°C).


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2010 ◽  
Vol 654-656 ◽  
pp. 146-149 ◽  
Author(s):  
J.M. Nam ◽  
Tomoyuki Terai ◽  
Masashi Mino ◽  
Y. Aikawa ◽  
Tomoyuki Kakeshita

We have investigated the effect of particle size on martensitic transformation by using single crystalline specimens of an Fe-30at%Ni alloy by scanning electron microscope (SEM) observation, X-ray diffraction(XRD), magnetic susceptibility and magnetization measurements. As a result, we have found that an athermal martensitic transformation changes to an isothermal martensitic transformation with decreasing particle size. Considering the result of the TTT diagram, we have estimated the driving force for the martensitic transformation and the cluster size for nucleation of the isothermal martensitic transformation based on the model previously proposed.


1991 ◽  
Vol 35 (A) ◽  
pp. 607-609
Author(s):  
P. D. Killen ◽  
N. A. Raftery ◽  
D.G. Hay

In this study electrolytic copper powder and atomised high purity iron powders of various size, fractions were consolidated to comparable densities by two very different processes (quasistatic pressing and dynamic, or shook wave, compaction). The resulting pairs of compacts had densities of approximately 0.96 of the theoretical density. These specimens were analysed by X-ray diffraction in order to determine the effect of particle size on the response to compaction.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000557-000562
Author(s):  
Ali Karbasi ◽  
W. Kinzy Jones

Neurostimulator applications will require much higher I/O feedthrough density for hermetic implantable enclosures, often greater than 100 I/O. This work evaluates the development of high-density platinum via structure cofired in alumina. The platinum was observed to melt when cofired at 1550°C, almost 200°C below its melting point, independent of the particle size (nano to micron size particles) or particle morphology. An analysis of the effect of particle size (nano to micron size Pt), firing atmosphere (air, hydrogen, inert), firing temperatures, intermetallic reactions and additives to control thermal expansion and adhesion strength was performed to evaluate and minimize this exothermic reaction. The interaction of platinum and alumina has been evaluated using X-ray diffraction and SEM.


2012 ◽  
Vol 268-270 ◽  
pp. 464-467
Author(s):  
Yan Jie Zhang ◽  
Xue Yong Wang ◽  
Yan Fang Yang

Because of the excellent specialties of intensity, rigidity, heat-durability, corrosion proof and wide uses in many fields, Al2O3 has a promising future. Supercritical hydrolysis is a new method to produce Al2O3 micro-particles whose average diameter is 537nm. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Particle-size Analyzer. Its product is the high purity α-Al2O3 which is characterized by the features of the small particle size, the well developed dispersion, and the fine concentricity. The influences of process parameters, including pressure, temperature,total flux and ratio of branch flux, on particle size were investigated at the same time. The results indicated that the particle size has a significant increasing trend with an increase in the pressure and temperature; however, it decreased with an increase in the total flux, while it decreased slightly with an increase in the ratio of branch flux.


1991 ◽  
Vol 249 ◽  
Author(s):  
C.H. Lin ◽  
T.S. Yan ◽  
T.S. Chin

ABSTRACTBa/Sr titanate powders were obtained by reacting TiO2.xH2O gel in Ba(OH)2 and/or Sr(OH)2 aqueous solution. Different reaction temperatures between 68°C and 98°C and different mole ratios of Ba(OH)2 and Sr(OH)2 were used.X-ray diffraction analysis showed that the titanate powders are cubic, and they are solid solutions of barium and strontium. The lattace spaces of the titanates are affected by the Ba(OH)g/ Sr(OH)g, mole ratio. TEM analysis showed that the titanate powders were spherical, ultrafine, and almost monodispersed. The particle size of the powders is about from 41 to 50 nm depending on the reaction temperature.The titanate powders were compacted and sintered at various temperatures. The best sintering temperature of the powders is about 150°C lower than that of powders made by solid state sintering method.


Sign in / Sign up

Export Citation Format

Share Document