scholarly journals Interpolation Method for Visual Simulation of Engine Exhaust Flame

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bo Cheng ◽  
Xiaomei Hu ◽  
Zhiqiang Liu ◽  
Xiuliang Gong

Propulsive force and exhaust fluid temperature are important indicators in the performance of an engine. An investigation of the effects of propellant composition, plane flight conditions, and engine operating environment on rocket thrust and the range of smoke plume temperature can provide references in the design of engine mechanics at the optimization of propellant composition, in monitoring of target identification and in the evolving of stealth of stealth technology. In order to understand the characteristics of the engine tail flame, a visual simulation of the engine tail flame was carried out by combining the engine operating conditions with the tail flame conditions. Based on the advantages of the bicubic spline interpolation algorithm and the Kriging interpolation algorithm, this paper proposes a hybrid interpolation algorithm, which performs color mapping and three-dimensional space separation in the engine plume data set and model, and visualizes the engine and engine plume. The simulation realizes real-time monitoring of the functions of various engine components through characteristic colors. The research results show that the hybrid interpolation method can effectively visualize the engine exhaust flame. The simulated plume has a relatively obvious temperature peak at 0.7 m, and the temperature of the plume flow field is significantly higher than that of the frozen plume flow field by about 200 ~1000 K. This shows that the algorithm in this paper helps to visualize the expression of engine tail flame information.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hong-hua Cai ◽  
Wan-sheng Nie ◽  
Xin-lei Yang ◽  
Rui Wu ◽  
Ling-yu Su

Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Simona Babiceanu ◽  
Sanhita Lahiri ◽  
Mena Lockwood

This study uses a suite of performance measures that was developed by taking into consideration various aspects of congestion and reliability, to assess impacts of safety projects on congestion. Safety projects are necessary to help move Virginia’s roadways toward safer operation, but can contribute to congestion and unreliability during execution, and can affect operations after execution. However, safety projects are assessed primarily for safety improvements, not for congestion. This study identifies an appropriate suite of measures, and quantifies and compares the congestion and reliability impacts of safety projects on roadways for the periods before, during, and after project execution. The paper presents the performance measures, examines their sensitivity based on operating conditions, defines thresholds for congestion and reliability, and demonstrates the measures using a set of Virginia safety projects. The data set consists of 10 projects totalling 92 mi and more than 1M data points. The study found that, overall, safety projects tended to have a positive impact on congestion and reliability after completion, and the congestion variability measures were sensitive to the threshold of reliability. The study concludes with practical recommendations for primary measures that may be used to measure overall impacts of safety projects: percent vehicle miles traveled (VMT) reliable with a customized threshold for Virginia; percent VMT delayed; and time to travel 10 mi. However, caution should be used when applying the results directly to other situations, because of the limited number of projects used in the study.


2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


2021 ◽  
Vol 111 ◽  
pp. 106576
Author(s):  
Chen Kong ◽  
Juntao Chang ◽  
Ziao Wang ◽  
Yunfei Li

2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
R C Leaper ◽  
M R Renilson

Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Author(s):  
Jun Liu ◽  
Qiang Du ◽  
Guang Liu ◽  
Pei Wang ◽  
Hongrui Liu ◽  
...  

To increase the power output without adding additional stages, ultra-high bypass ratio engine, which has larger diameter low pressure turbine, attracts more and more attention because of its huge advantage. This tendency will lead to aggressive (high diffusion) intermediate turbine duct design. Much work has been done to investigate flow mechanisms in this kind of duct as well as its design criterion with numerical and experimental methods. Usually intermediate turbine duct simplified from real engine structure was adopted with upstream and downstream blades. However, cavity purge mass flow exists to disturb the duct flow field in real engine to change its performance. Naturally, the wall vortex pairs would develop in different ways. In addition to that, purge flow rate changes at different engine representative operating conditions. This paper deals with the influence of turbine purge flow on the aerodynamic performance of an aggressive intermediate turbine duct. The objective is to reveal the physical mechanism of purge flow ejected from the wheel-space and its effects on the duct flow field. Ten cases with and without cavity are simulated simultaneously. On one hand, the influence of cavity structure without purge flow on the flow field inside duct could be discussed. On the other hand, the effect of purge flow rate on flow field could be analyzed to investigate the mechanisms at different engine operating conditions. According to this paper, cavity structure is beneficial for pressure loss. And the influence concentrates near hub and duct inlet.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


Sign in / Sign up

Export Citation Format

Share Document