scholarly journals Characteristics Evolution of Multiscale Structures in Deep Coal under Liquid Nitrogen Freeze-Thaw Cycles

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yingfeng Sun ◽  
Yixin Zhao ◽  
Yulin Li ◽  
Nima Noraei Danesh ◽  
Zetian Zhang

Liquid nitrogen freeze-thaw fracturing has attracted more and more attention in improving the coal reservoir permeability. In order to reveal the impact of liquid nitrogen freeze-thaw on the multiscale structure of deep coal, the multiscale structure evolution law of deep and shallow coal samples from the same seam in the Qinshui coalfield during the liquid nitrogen freeze-thaw cycling was investigated using NMR T 2 spectrum, NMRI, and SEM. The connectivity between mesopores and macropores in deep and shallow coal is improved after liquid nitrogen freeze-thaw cycles. The influence of liquid nitrogen freeze-thaw cycles on the structure evolution of deep and shallow coal is the formation and expansion of microscopic fractures. The initial NMR porosity of deep coal is lower than that of shallow coal from the same coalfield and coal seam. The NMR porosity of both the deep and shallow coal samples increases with the increase of the number of freeze-thaw cycles, and the NMR porosity growth rate of the deep sample is lower than that of the shallow sample.

2021 ◽  
Vol 21 (1) ◽  
pp. 484-494
Author(s):  
Xiaofeng Ji ◽  
Dangyu Song ◽  
Shaokai Yu ◽  
Kaikai He ◽  
Yunbo Li

To study the change and main control factors of the high-rank coal reservoir permeability in deep coal seams, permeability tests under different stresses and gas pressures were carried out in the laboratory. The development and distribution of nano-micro pores and fractures in the coal matrix were analyzed and observed by mercury intrusion porosimetry, gas adsorption, scanning electron microscope and computed tomography to reveal the permeability variation mechanism. The results showed that the initial permeability of the coal samples ranged from 0.0114 mD to 0.2349 mD when the effective stress was 0 MPa, and it clearly varied among different samples. The permeability of all the coal samples was very sensitive to the effective stress and decreased exponentially with the increase of the effective stress. The increase of the pore pressure also led to a decrease of the permeability, whereas the impact of the pore pressure on permeability was less obvious compared with the effective stress. Sub-nanopores, nanopores, micro-fractures and larger fractures are all developed in the coal samples. Connected larger fractures were the main gas migration channels in permeability determination, and the narrowing, disconnection, and closure of the fractures caused by the increase of the effective stress were the most important reasons for significant reduction of permeability.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 644 ◽  
Author(s):  
Xinlu Yan ◽  
Songhang Zhang ◽  
Shuheng Tang ◽  
Zhongcheng Li ◽  
Yongxiang Yi ◽  
...  

Due to the unique adsorption and desorption characteristics of coal, coal reservoir permeability changes dynamically during coalbed methane (CBM) development. Coal reservoirs can be classified using a permeability dynamic characterization in different production stages. In the single-phase water flow stage, four demarcating pressures are defined based on the damage from the effective stress on reservoir permeability. Coal reservoirs are classified into vulnerable, alleviative, and invulnerable reservoirs. In the gas desorption stage, two demarcating pressures are used to quantitatively characterize the recovery properties of permeability based on the recovery effect of the matrix shrinkage on permeability, namely the rebound pressure (the pressure corresponding to the lowest permeability) and recovery pressure (the pressure when permeability returns to initial permeability). Coal reservoirs are further classified into recoverable and unrecoverable reservoirs. The physical properties and influencing factors of these demarcating pressures are analyzed. Twenty-six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were examined as a case study, showing that there is a significant correspondence between coal reservoir types and CBM well gas production. This study is helpful for identifying geological conditions of coal reservoirs as well as the productivity potential of CBM wells.


2016 ◽  
Vol 43 (10) ◽  
pp. 865-874 ◽  
Author(s):  
Sheng-lin Wang ◽  
Qing-feng Lv ◽  
Hassan Baaj ◽  
Xiao-yuan Li ◽  
Yan-xu Zhao

Freeze–thaw action is considered to be one of the most destructive actions that can induce significant damage in stabilized subgrades in seasonally frozen loess areas. Laboratory tests including frost heave – thaw shrinkage and microstructure change during freeze–thaw cycles were conducted to evaluate the volume change rate of loess stabilized with cement, lime, and fly ash under the impact of cyclic freeze–thaw conditions. The loess specimens collapsed after eight freeze–thaw cycles (192 h), but most stabilized loess specimens had no visible damage after all freeze–thaw cycles were completed. All of the stabilized loess samples underwent a much smaller volume change than the loess alone after the freeze–thaw cycles. Although surface porosity and equivalent diameter of stabilized loess samples increased, the stabilized loess can retain its microstructure during freeze–thaw cycles when the cement content was less than 6%. To ensure freeze–thaw resistance of stabilized loess subgrades, the mix proportions of the three additives was recommended to be 4 to 5% cement, 6% lime, and 10% fly ash.


2018 ◽  
Vol 54 (5) ◽  
pp. 1642-1650 ◽  
Author(s):  
Minjie Cao ◽  
Jing Wang ◽  
Ailing Cao ◽  
David Shiuan ◽  
Rongfa Guan ◽  
...  

2021 ◽  
Vol 31 (2) ◽  
pp. 168-179
Author(s):  
Kostiantyn Pobielienskyi ◽  
◽  
Oleksandr Pakhomov ◽  
Gurina Tetyana Gurina Tetyana ◽  
Liliia Pobielienska ◽  
...  

Cryoablation under endoscopic control is considered to be a promising approach in therapy of benign nodules of thyroid gland (TG). However, pathologically altered TG tissue differs in thermal conductivity and heat capacity from normal one, therefore the model experiments in animals are necessary to determine the cryoablation parameters. In this research, the changes of temperature during cryoablation of experimental rat TG under normal conditions and the one with propylthiouracil (PTU)-induced diffuse hyperplasia (DH) were comparatively assessed. TG was cryo-ablated in rats, previously received a 0.1% PTU solution within 90 days, using a copper cryoprobe, cooled to liquid nitrogen temperature. The process was controlled using thermocouples placed at different distances from the iceball. Differences between thermograms of intact TG tissue and the samples with PTU-induced DH were established. To achieve the destruction effect of TG with DH to a depth of more than 1 mm, the need of implementing two freeze-thaw cycles with 120-second cryoprobe exposure was proven.


Author(s):  
P. Kalantari ◽  
M. Bernier ◽  
K. C. McDonal ◽  
J. Poulin

Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.


2021 ◽  
Author(s):  
Usman Shazad ◽  
Shafa Ullah ◽  
M. Iqbal

Abstract The self-organization of a thermally relativistic magnetized plasma comprising of electrons, positrons and static ions is investigated. The self-organized state is found to be the superposition of three distinct Beltrami fields known as triple Beltrami (TB) state. In general, the eigenvalues associated with the multiscale self-organized vortices may be a pair of complex conjugate and real one. It is shown that all the eigenvalues become real when thermal energy increases or the positron density decreases. The impact of relativistic temperature and positron density on the formation of self-organized structures is investigated. The self-organized field and flow vortices may vary simultaneously on vastly different length scales. The disparate variation of self-organized vortices is important in the context of dynamo theory. The present work is useful to study the formation of multiscale vortices and dynamo mechanisms in multi-species thermally relativistic plasmas.


Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Barbara Francke ◽  
Artur Piekarczuk

This paper analyses the mechanism of the loss of functional properties of water-impermeable products used under ceramic tiles bonded with adhesives. Recorded damages were caused by selected ageing factors and were measured by the loss of adhesion of individual layers of the set. The analyzed phenomenon is found mainly on terraces and balconies located in a mid-European transitional climate, i.e., exposed to temperatures passing through 0 °C for three seasons a year. The tests reflected the action of three main functional factors, i.e., temperatures, water and freeze/thaw cycles. Tested waterproof coatings were grouped into three types, i.e., dispersion, cementitious and reaction resin-based products. Research kits consisted of liquid-applied water-impermeable products laid on a concrete substrate, adhesives and tiles. Comparing the effects of the action of the above-mentioned ageing factors revealed that water has the greatest impact on the reduction of the tensile adhesion strength of such sets. The adhesion of waterproof coatings to the concrete substrate showed higher values than the adhesion between the waterproof coating and the tile adhesive layers, regardless of the coating material. Both for samples not exposed to ageing factors, and for those exposed to such impacts, failure usually occurred in the adhesive layer or between the tile adhesive and the waterproof coating, without damaging the waterproof layer. The loss of adhesion of finishing layers to the substrate was not accompanied by a loss of tightness of the waterproof coating. The impact of negative water ageing was particularly destructive on the adhesion of cement-based tile adhesives to waterproof coatings made of polymer with a water dispersion of absorbability above 7% (V/V). There was no correlation among the results of adhesion of the finishing layers to the waterproofing layer after the action of the three ageing factors, i.e., water contact, elevated temperature and freeze/thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document