scholarly journals Impact of Addition of Banana Fibres at Varying Fibre Length and Content on Mechanical and Microstructural Properties of Concrete

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rodgers B. Mugume ◽  
Adolph Karubanga ◽  
Michael Kyakula

This experimental study aimed at investigating the impact of addition of banana fibres on the mechanical (compression, splitting tension, and flexure) and microstructural (microscopic morphology and Energy Dispersive X-ray Spectroscopy) properties of concrete. Concrete mixes comprising of banana fibres of varying fibre lengths (40, 50, and 60 mm) and fibre contents (0.1, 0.2, 1.0, 1.5, and 2.5%) were assessed. Addition of banana fibres to concrete was observed to significantly impact on compressive strength only at lower fibre contents of up to 0.25% for all fibre lengths. Fibre length had no significant impact on compressive strength at lower fibre contents of up to 0.25%, but shorter fibres were observed to perform better than longer ones at higher dosages more than 0.25%. Increase in fibre content positively impacted on tensile strength of concrete at relatively lower fibre dosages of up to 1%. Similarly, fibre length impacted on tensile strength of concrete at lower fibre contents of up to 1% and, longer fibres were observed to be more effective than shorter ones. Addition of banana fibres generally did not greatly contribute to flexural strength of concrete but had a marginal impact only when shorter fibres were used at lower fibre dosages. Also, microstructure of concrete was improved through better bonding between the fibres and the matrix and reduction in porosity of the matrix, which resulted in improved mechanical properties of the composite. Banana fibres further contributed to changes in phases of the composite structure of Banana fibre-reinforced concrete (BFRC) through a reduction in its interplanar spacing and lattice structure. For optimal purposes, addition of banana fibres should be limited to a maximum of 1% fibre content preferably using shorter fibre lengths. Further research to improve flexural strength of BFRC to meet minimum technical requirements is required before it can be considered for structural applications.

2001 ◽  
Vol 9 (5) ◽  
pp. 333-338 ◽  
Author(s):  
Mitsuhiro Shibata ◽  
Retsu Makino ◽  
Ryutoku Yosomiya ◽  
Hiroyuku Takeishi

Poly(butylene succinate) composites reinforced with short sisal fibre were prepared by melt mixing and subsequent injection moulding. The influence of fibre length, fibre content and the surface treatment of the natural fibres on the mechanical properties of the composites were evaluated. Regarding fibre length, the tensile and flexural properties of the composites had maxima at a fibre length of about 5 mm. The flexural and tensile moduli of the composites increased with increasing fibre content. Although the tensile strength hardly changed, the flexural strength increased up to a fibre content of 10 wt%. The dynamic mechanical analysis of the composites showed that the storage moduli at above ca.-16°C (corresponding to the glass transition temperature of the matrix) increased with increasing fibre content.


2020 ◽  
Vol 8 (5) ◽  
pp. 3186-3192 ◽  

The investigation is intended to evaluate the impact of substitution of demolished concrete debris as coarse aggregate (CA) in pavement quality concrete (PQC). The strength characteristics of PQC such as compressive strength, tensile strength, flexural strength and impact strength after adding recycled coarse aggregate (RCA) are experimentally determined in laboratory environment. Specimens of M30 grade concrete were prepared and tested. The RCA was substituted up to 50% by replacing CA content. Based on the investigation results, it was found that reduction of slump value due to the substitution of RCA in concrete. There is no remarkable reduction of compressive strength and flexural strength up to 30% and 40 % replacement of CA respectively in all the curing periods. The impact strength was reduced due to addition of RCA and observed 8% reduction after adding 20% RCA. It is suggested that RCA may be used up to 20% as CA in PQC.


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


2018 ◽  
Vol 15 (1) ◽  
pp. 40-47
Author(s):  
Jenarthanan MP ◽  
Ramesh Kumar S. ◽  
Akhilendra Kumar Singh

Purpose This paper aims to perform an experimental investigation on the impact strength, compressive strength, tensile strength and flexural strength of fly ash-based green composites and to compare with these polyvinyl chloride (PVC), high density polyethylene (HDPE) and low density polyethylene (LDPE). Design/methodology/approach Fly ash-based polymer matrix composites (FA-PMCs) were fabricated using hand layup method. Composites containing 100 g by weight fly ash particles, 100 g by weight brick dust particles and 50 g by weight chopped glass fiber particles were processed. Impact strength, compressive strength, tensile strength and flexural strength of composites have been measured and compared with PVC, HDPE and LDPE. Impact strength of the FA-PMC is higher than that of PVC, HDPE and LDPE. Structural analysis of pipes, gears and axial flow blade was verified using ANSYS. Barlou’s condition for pipes, Lewis–Buckingham approach for gears and case-based analysis for axial flow blades were carried out and verified. Findings Pipes, gears and axial flow blades made form fly ash-based composites were found to exhibit improved thermal resistance (i.e. better temperature independence for mechanical operations), higher impact strength and longer life compared to those made from PVC, HDPE and LDPE. Moreover, the eco-friendly nature of the raw materials used for fabricating the composite brings into its quiver a new dimension of appeal. Originality/value Experimental investigation on the impact strength, compressive strength, tensile strength and flexural strength of fly ash-based green composites has not been attempted yet.


Author(s):  
B. Kanna Babu ◽  
Bimalendu Dash

Concrete’s tensile strength is low compared to its compressive strength when subjected to normal stresses and impact loads, making it brittle. Continuous reinforcing improves the strength and ductility of concrete, but it requires careful placement and the availability of labour. In this work, the impact of several types of concrete fibre characteristics was studied. The concept of using fibres to alter the characteristics of building materials isn’t new. When concrete cracks and randomly oriented fibres start to operate together, they prevent crack development and extension while also increasing strength and ductility. The current trend is to develop more effective crack-resistant concrete, such as reinforced fibre concrete. The geometric size and modulus of fibres are the key factors of the mechanical performance of fibre reinforced concrete. According to the findings, adding fibres to concrete enhances compressive strength, flexural strength, split tensile strength, ductility, and impact strength. KEY WORDS: Nylon Fibre; Latex; Compressive Strength; Split Tensile Strength; Flexural Strength, Durability.


Author(s):  
Pawandeep Singh ◽  
RK Mishra ◽  
Balbir Singh

This study aimed at discovering the influence of low-cost eggshell ash (ESA) and boron carbide (B4C) addition on microstructure and mechanical characteristics of ZA-27 hybrid composites. Six different composites were fabricated utilizing the stir casting technique with different weight percentages of ESA and B4C particles varied from 0-5 wt.%. Composites were tested for density, hardness, compressive strength, tensile strength, and impact strength. X-ray diffraction (XRD) and scanning electron microscope (SEM) were utilized for the characterization of composites. Microstructure examination using SEM exhibited homogeneously dispersed reinforcements in the matrix. ESA particles decreased the composite density by 3.12%, and after the addition of B4C particles, density was found to be increased but was still lower than the base ZA-27 alloy. The hardness, tensile and compressive strength of the composites increased with the addition of reinforcements. However, composite reinforced with maximum wt.% of B4C particles showed a decreasing trend. The impact strength of the composites decreased when compared with the base alloy, but the reduction was marginal. Improved hardness, tensile and compressive strength of the composites was attributed to homogeneously dispersed ESA and B4C particles in the matrix. Higher tensile strength resulted from strong interfacial bonding between reinforcements and metal matrix, and low impact strength was due to brittle failure and plastic deformation.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


Sign in / Sign up

Export Citation Format

Share Document